Spelling suggestions: "subject:"komposits"" "subject:"composits""
1 |
Matériaux à base de solides hybrides poreux de type MOFs pour le stockage intersaisonnier d’énergie solaire / Metal Organic Frameworks based materials for long term solar energy storage applicationPermyakova, Anastasia 02 May 2016 (has links)
L’évolution rapide des technologies de stockage d’énergie requiert la mise en point de nouveaux matériaux plus performants afin d’utiliser l’énergie relative à l’adsorption d’un fluide (eau) pour restituer l’énergie solaire préalablement stockée sur une période courte (heures) ou prolongée (inter saisonnière). Ces matériaux sont des sels inorganiques (chimisorption de l’eau), des adsorbants physiques ou des composites (sel inorganique dans une matrice poreuse).Les polymères de coordination poreux (PCPs) ou ’Metal-Organic Frameworks‘ (MOFs) sont des solides poreux hybrides dont la structure cristalline résulte de l’association de ligands organiques polycomplexants et de briques inorganiques interagissant par liaisons fortes. Les MOFs présentent une plus grande diversité chimique et structurale par rapport aux solides poreux inorganiques, ce qui permet de varier ‘à la carte’ leur caractère amphiphile, leur volume poreux, la taille et la forme des pores.Dans le cadre de cette thèse, nous avons étudié en premier lieu une série de MOFs poreux et stables dans l’eau, construits à partir des cations métalliques à haut degré d’oxydation (Fe3+, Al3+, Cr3+, Ti4+, Zr4+) et de ligands polycarboxylates. Nous avons choisi cette série de MOFs en tant qu’adsorbants physiques tout en évaluant dans un second temps leur capacité en tant que matrices d’immobilisation de sels inorganiques.L’étude des propriétés d’adsorption d’eau des MOFs seuls a démontré leurs grandes capacités d’adsorption conduisant ainsi à des densités énergétiques relativement élevées pour des systèmes en physisorption pure. La synthèse du MOF le plus performant de cette série (MIL-160(Al)) a été mise à l’échelle. Ce matériau a ensuite été mis en forme et ses propriétés de stockage de chaleur ont été évaluées dans un prototype de laboratoire (réacteur ouvert).Les applications de stockage inter saisonnier requièrent des matériaux avec une densité énergétique plus élevée par rapport à celle des adsorbants physiques et à ce titre, les composites qui résultent de l’encapsulation de sels inorganiques au sein de matrices poreuses sont intéressants en termes de densité énergétique et de stabilité chimique. De ce fait, le deuxième chapitre porte sur l’exploration d’une série de MOFs en tant que matrices d’encapsulation de sels afin de préparer des composites pour le stockage de l’énergie.Les MOFs sélectionnés permettent d’étudier l’influence de certains paramètres de la matrice (balance amphiphile, volume/taille des pores) sur les propriétés d’adsorption d’eau des composites. Les capacités de stockage énergétique des composites ont été évaluées dans les conditions d’utilisation d’un système de stockage d’énergie.Finalement la capacité de stockage élevée et la bonne stabilité de cyclage (adsorption-désorption) des deux meilleurs composites à base de matrices mésoporeuses (MIL-100(Fe) et MIL-101(Cr)) confirment l’intérêt de ces solides pour ce type d’application. / Nowadays the forceful development of the energy storage technologies requires the design of novel adsorbents. Energy reallocation concept allows storing renewable solar energies at short (hours) and long term (inter seasonal) using adsorption method. Energy storage materials can be divided in chemical storage materials, physical storage materials and composite materials (inorganic salt in porous matrix).Metal-Organic Frameworks (MOFs) are a new class of porous crystalline materials that are built from an inorganic subunits and organic ligands defining an ordered structure with regular accessible porosity. In comparison with other classes of porous solids, MOFs display a higher degree of versatility (chemical composition, topology) and tunable amphiphilic character, pore volume, pore size, shape, etc.In this work, we have studied a series of water stable porous metal carboxylates made from cheap metal cations (Fe3+, Al3+, Cr3+, Ti4+, Zr4+) and polycarboxylate linkers as pure physical adsorbents and as host matrices of salts for the design of composite adsorbents. The study of the adsorption properties of pure MOFs in conditions of thermal energy storage system has shown high water adsorption capacity and high energy storage densities.The most promising MOF from this series namely MIL-160(Al) has been prepared at large scale, processed as pellets and then evaluated in open-reactor prototype.The second chapter has been focused on the first exploitation of a series of Metal Organic Framework (MOFs) as host matrices of salts for the preparation of composite sorbents for heat storage application.Indeed, inter seasonal energy storage requires materials with higher energy densities (composite and chemical storage materials), than physical sorption materials can offer. We have selected a series of MOFs differing by their amphiphilic balance and pore volume in order to investigate the impact of such physico-chemical properties on the water sorption properties of composites. The energy storage capacity of salt-MOFs composites has been evaluated in representative conditions of thermal storage devices. The high energy storage capacity and good stability under numerous adsorption-desorption cycles for two composites based on mesoporous MIL-100(Fe) and MIL-101(Cr) confirm the potentiality of such composites for this application.
|
2 |
Elaboration et caractérisation mécanique, hygrique et thermique de composites bio-sourcés / Elaboration and mechanical, hygric and thermal characterization of bio-sourced compositeMazhoud, Brahim 12 December 2017 (has links)
En réponse aux préoccupations environnementales, l'utilisation du béton de chanvre s'est développée ces dernières années et a montré son efficacité d'un point de vue hygrothermique. L’analyse de son cycle de vie souligne l’intérêt environnemental du chanvre et montre que le constituant le plus impactant est le liant, généralement à base de chaux. L'objectif de cette thèse est de développer des composites à base de chanvre en substituant à la chaux une matrice minérale moins impactante. Plusieurs formulations sont réalisées avec différentes matrices liantes et différents dosages en chanvre. D'une part, le liant commercial ThermOⓇ est utilisé pour produire des bétons de chanvre «classiques», servant de référence comparative. D' autre part, des matrices liantes sont développées à base de fines issues de boue de lavage. La terre commerciale ClaytecⓇ est également considérée. Après avoir présenté les différentes matières premières retenues pour cette étude. Le liant ThermOⓇ est caractérisé pour différents dosages en eau. Les fines issues de boues de lavage font l'objet d'une étude de stabilisation visant à satisfaire des objectifs de résistance mécanique de la matrice liante. Une stabilisation avec 5 % de ciment portland couplé à 5% de ThermOⓇ est retenue pour la suite de l'étude. Cette formulation n'impacte pas significativement la conductivité thermique de la matrice liante, tout en permettant d'atteindre les objectifs mécaniques fixés. Les composites réalisés avec les différents liants sélectionnés présentent des dosages chanvre / liant évoluant entre 0.4 et 0.75, dosage conventionnels pour des applications toit, mur et dalle. Ils sont mis en œuvre par compaction, ce qui conduit à des masses volumiques comprises entre 370 et 6 15 kg/m3 et des porosités comprises entre 70 et 81 %. Les comportements mécaniques, thermiques et hygriques des composites sont évalués. Les performances mécaniques mesurées répondent aux exigences des règles professionnelles Construire en Chanvre, y compris pour les composites réalisés avec des fines non stabilisées. Les isothermes de sorption obtenues sont des sigmoïdes de classe II ou Ill. présentant des teneurs en eau plus élevées pour les composites réalisés avec le ThermOⓇ. Les valeurs MBV obtenues montrent que les composites à base de fines ou de terre ClaytecⓇsont meilleurs régulateurs hygriques que les composites réalisés avec le liant ThermOⓇ, respectivement classés excellents et très bons régulateurs hygriques. Les performances thermiques des composites en permettent un usage en isolation répartie. Au point sec, la conductivité thermique dépend essentiellement de la masse volumique, sans impact du type de liant. Lorsque l'humidité relative ambiante augmente, la conductivité thermique des composites à base de liant ThermOⓇ est plus impactée que celle des autres composites, en lien avec les isothermes de sorption. Cette étude montre donc toute la pertinence du développement de composites formulés à l'aide de fines issues de boues de lavage en substitution de la chaux. / In response to environmental concerns, the use of hemp concrete has been developed in recent years and has shown its efficiency from a hygrothermal point of view. Its life cycle analysis underlines the environmental interest of hemp and shows that the most impacting component is the binder, usually lime-based. The aim of this thesis is to develop hemp-based composites by substituting lime with a less impacting mineral matrix. Several formulations are made with different binder matrices and different hemp content. On the one hand, the ThermO® commercial binder is used to produce "classic" hemp concrete, which are used as a comparative reference. On the other hand, binder matrices are developed based on washing mud fines. Claytec® commercial earth is also considered. After presenting the different raw materials selected for this study, the ThermO® binder is characterized with several water ton binder ratios. The washing mud fine stabilisation is investigated regarding mechanical resistance objectives. A stabilization with 5% of portland cement coupled with 5% of ThermO® is selected for the following development. This formulation does not significantly affect the thermal conductivity of the binder matrix, while allowing to achieve the fixed mechanical objectives. The composites made with the various selected binders have hemp I binder ratios ranging between 0.4 and 0.75, conventional ratio for roof, wall and floor applications. They are implemented by compact ion, which leads to densities ranging from 370 to 61 5 kg/m3 and porosities ranging from 70 to 81%. The mechanical. Thermal and hygric behaviors of the composites are investigated. The measured mechanical performances meet the requirements of the professional rules Construire en Chanvre, even for composites made with unstabilized fines. The sorption isotherms obtained are class II or III sigmoid, with higher water contents for composites made with ThermO®. The MBV values obtained show that the composites made with fines and with Caytec® earth are better hygric regulators than the composites made with ThermO® binder, respectively classified as excellent and as very good hygric regulators. The thermal performances of the composites allow a use in distributed insulation. At the dry point, the thermal conductivity mainly depends on the density, without impact of the type of binder. As ambient relative humidity increases, the thermal conductivity of ThermO®, binder-based composites is more impacted than that of other composites in connection with sorption isotherms. This study thus shows the relevance of the development of composites formulated with washing mud fine as a substitute tor lime.
|
3 |
Ekotoxikologické hodnocení vybraných průmyslových odpadních materiálů a anorganických kompozitů s jejich obsahem / Ecotoxicological Evaluation of Industrial Waste Materials and Anorganic Composites Containing Waste MaterialsPavlitová Letková, Zuzana January 2011 (has links)
This work sums up results of tests of ecotoxicity that were made on different kind of industrial waste materials like classical ash, fluid and fly ash, slags as well as anorganic composites containing waste materials. Composites might be used for building materials in the future. Ecotoxicological tests were used for evaluation of ecotoxicity, represented by 4 trophic levels, with several bioindicators evaluated at different exposure time periods. The battery of classical tests includes a growth inhibition test of the freshwater alga Raphidocellis subcapitata, an immobilization test of the cladoceran Daphnia magna and freshwater fish Poecilia reticulata and a test of inhibitive effects on the root growth of white mustards Sinapis alba. Tests with enchytraeidae, collembolan and lettuce were chosen from group of contact tests. It was realized confrontation between classical test with seeds of mustard and contact tests with seeds of lettuce. Results of ecotoxicity tests were determination of percentage of mortality, immobilization, stimulation or inhibition of growth for testing organisms. It was made comparison of results individual ecotixicity tests. Results of classical aquatic tests were compared with contact tests realized in artificial ground.
|
4 |
Influence de charges carbonées sur la dissipation thermique de nouveaux composites diélectriques / Influence of carbon fillers on the heat dissipation of new dielectric compositesDiaz Chacon, Lurayni 09 December 2016 (has links)
La plupart des équipements électroniques et électriques sont enrobés ou encapsulés par de la résine epoxy, choisie pour ses qualités physiques, chimiques et surtout diélectriques. Cependant, ce matériau présente un inconvénient majeur : sa faible conductivité thermique (0.2 W/mK). Dans ce contexte, nous avons élaboré et caractérisé des composites epoxy / carbone dans le but d’améliorer la conductivité thermique de ce type de résine tout en conservant ses propriétés diélectriques. Nous avons ainsi testé le potentiel d’une large gamme de charges carbonées, de structures, formes et tailles variées (sphères, tubes et plaquettes), telles que des micro-sphères de carbone et des nanotubes multi-parois synthétisées par CVD et PECVD, mais aussi des charges industrielles : nano-plaquettes de graphite (graphite exfolié), du coke de pétrole, du graphite synthétique et naturel. Des échantillons de matériaux composites massifs (50 x 50 x 4 mm) ont été préparés à partir d’une résine industrielle DGEBA de viscosité élevée 8.5-15 Pa.s, en faisant varier le taux de charge. Les propriétés thermiques des composites ont été mesurées à partir de la technique du hot disk (source plane instationnaire). Les meilleurs résultats ont été obtenus à partir des nano-plaquettes de graphite : les conductivités thermiques des composites ont atteint (0.55 W/mK) pour une charge admissible maximale de 2.67 vol.%. L’accroissement relatif de conductivité thermique a été de 66 % pour 1 vol.%. Cet accroissement est particulièrement élevé dans la mesure où les meilleurs résultats reportés sont de 20 % / vol.% dans le cas de résines à viscosité plus faible de type DGEBF (2.5 - 4.5 Pa.s). La concentration de charge admissible (1.3 vol.%) pour conserver une résistivité électrique suffisamment élevée (> 105 ohm.m) nous a permis d’atteindre une conductivité thermique de 0.37 W/mK (soit une augmentation de 100% par rapport à la résine initiale). Ces résultats sont interprétés en termes de transport des phonons acoustiques dans un système composite bi-phasique. Les nano-plaquettes de graphite sont caractérisées par une morpholigie anisotrope, d’ une surface d’environ 26 x 26 microns dont l’épaisseur est de l’ordre de 6 nm. Elles combinent une structure lamellaire périodique bien ordonnée dans les plans de graphène (caractérisation par XPS, EDX et DRX), et des rapports d’acicularité élevés ( 4300), estimés à partir de différentes techniques : TEM, SEM et BET. Nous montrons qu’accroitre l’acicularité des nano-plaquettes de graphite par exfoliation, en préservant une grande surface des plans de graphène, et sans générer de défauts de structure, constitue un défi. Cette morphologie 2D particulière permet d’une part de conserver voire augmenter la conductivité intrinsèque des charges, favorisée dans les plans de graphène, et d’autre part, en raison de leur grande surface spécifique, de garantir après leur dispersion dans la résine, un meilleur transport des phonons acoustiques dans le composite. / Most electronic and electrical equipment are coated or encapsulated by epoxy resin due to its physical, chemical and dielectric properties. However, this material has a major drawback: its low thermal conductivity ( 0.2 W / mK). In this context, we have developed and characterized epoxy / carbon composites in order to improve the thermal conductivity of this type of resin while maintaining its dielectric properties. We have tested the potential of a wide range of carbonaceous fillers, structures, shapes and sizes (spheres, tubes and plates), such as carbon micro-spheres and multi-walled carbon nanotubes synthesized by CVD and PECVD, but also industrial fillers: graphite nano-platelets (exfoliated graphite), petroleum coke, synthetic and natural graphite. Large composite samples (50 x 50 x 4 mm) were prepared from a DGEBA engineering resin of high viscosity 8.5-15 Pa.s, by varying the charge vol%. The thermal properties of the composites were measured from the transient plane source technique (hot disk). The best results are obtained from graphite nano-platelets: the thermal conductivity reach (0.55 W / mK) for a maximum load of 2.67 vol%.. The relative increase of thermal conductivity is 66% to 1 vol.%. This increase is particularly high to the extent that the best results reported so far is 20% / vol% for resins with lower viscosity, type DGEBF (2.5 - 4.5 Pa.s). The allowable concentration (1.3 vol.%) to maintain a sufficiently high electrical resistivity (> 105 ohm.m) permits to increase of the thermal conductivity to 100% (0.37 W / mK) compared to the initial resin. These results are interpreted in terms of transport of acoustic phonons in the composite two-phase system. Graphite nano-platelets are characterized by anisotropic shapes with a surface of about 26 x 26 microns whose thickness is of the order of 6 nm. They combine an ordered periodic structure in graphene planes (characterization by XPS, EDX and XRD), and a high aspect ratio ( 4300), estimated using various techniques: TEM, SEM and BET. We show that graphite exfoliation permit to increase the aspect ratio of graphite nanoplatelets, maintaining large micronic graphene surface, and without generating structural defects is a challenge. This peculiar 2D morphology allows on one hand, to retain or even increase the intrinsic filler conductivity, favored in the graphene planes, and on another hand, due to their high surface area, to ensure after their dispersion in the resin, a better transport of acoustic phonons through the composite.
|
5 |
Untersuchung der gassensitiven Eigenschaften von SnO2/NASICON-Kompositen / Investigation of the gas sensitive properties of SnO2/NASICON-CompositsHetznecker, Alexander 17 April 2005 (has links) (PDF)
In this work the influence of solid electrolyte additives on the gas sensing properties of tin oxide layers was investigated systematically for the first time. NASICON (NAtrium, Super Ionic CONductor, Na(1+x)Zr2SixP(3-x)O12; 0 <= x <= 3) was used as a model for solid electrolyte additives. The structure of that material is ideally suitable for studies of the correlation between material parameters and the gas sensitivity of the layers. In the NASICON structure the content of mobile Na+-ions can be varied by a factor of four resulting in a simultaneous change of the ionic conductivity sigma(Na+) by approximately three orders of magnitude without considerable structural alterations. Powders of SnO2 and NASICON (x = 0; 2.2; 3) were prepared separately by means of sol-gel routes and mixed in a volume ratio of 80/20. Pastes were prepared from these powders with different compositions and screen printed on alumina substrates with a fourfold structure of thin film gold electrode combs. Four different compositions were characterised simultaneously at elevated temperatures in various gas atmospheres. The conductivity of the layers, when measured in air, decreases considerably with increasing Na+-content in the NASICON additive. This is correlated with enhanced activation energy of the electronic conductivity. The sensitivity of the layers to polar organic molecules like R-OH (alcohols), R-HO (aldehydes) and ROOH (carboxylic acids) is highly enhanced by the NASICON additive. This is observed especially on the admixtures with NASICON of high Na+-content (x = 2.2 and x = 3). On the other hand, the sensitivity to substances with mid-standing functional groups like 2-propanol or propanone can not be enhanced by NASICON additives. Furthermore the sensitivity of these composite layers to CO, H2, NH3, methane, propane, propene and toluene (all exposed as admixtures with air) is lower than the sensitivity of pure SnO2-layers. These observations are well correlated with the results of gas consumption measurements on SnO2/NASICON powders by means of FTIR spectroscopy. In spite of the lack of surface analytical data, a model of surface chemical gas reactions based on a triple phase boundary (SnO2/NASICON/gas atmosphere) was developed, which explains the experimental observations qualitatively. It is assumed that the decrease of the electronic conductivity as observed in the presence of NASICON additives with increasing Na+-content is due to an enhanced electron depletion layer. This is formed in the SnO2 grains by Na+/e- interactions across the SnO2/NASICON-interface. The enormous enhancement of the sensitivity to polar organic molecules may be due to specific nucleophilic interactions with the Na+-ions and coupled Na+/e--interactions at the triple phase reaction sites.
|
6 |
Untersuchung der gassensitiven Eigenschaften von SnO2/NASICON-KompositenHetznecker, Alexander 24 February 2005 (has links)
In this work the influence of solid electrolyte additives on the gas sensing properties of tin oxide layers was investigated systematically for the first time. NASICON (NAtrium, Super Ionic CONductor, Na(1+x)Zr2SixP(3-x)O12; 0 <= x <= 3) was used as a model for solid electrolyte additives. The structure of that material is ideally suitable for studies of the correlation between material parameters and the gas sensitivity of the layers. In the NASICON structure the content of mobile Na+-ions can be varied by a factor of four resulting in a simultaneous change of the ionic conductivity sigma(Na+) by approximately three orders of magnitude without considerable structural alterations. Powders of SnO2 and NASICON (x = 0; 2.2; 3) were prepared separately by means of sol-gel routes and mixed in a volume ratio of 80/20. Pastes were prepared from these powders with different compositions and screen printed on alumina substrates with a fourfold structure of thin film gold electrode combs. Four different compositions were characterised simultaneously at elevated temperatures in various gas atmospheres. The conductivity of the layers, when measured in air, decreases considerably with increasing Na+-content in the NASICON additive. This is correlated with enhanced activation energy of the electronic conductivity. The sensitivity of the layers to polar organic molecules like R-OH (alcohols), R-HO (aldehydes) and ROOH (carboxylic acids) is highly enhanced by the NASICON additive. This is observed especially on the admixtures with NASICON of high Na+-content (x = 2.2 and x = 3). On the other hand, the sensitivity to substances with mid-standing functional groups like 2-propanol or propanone can not be enhanced by NASICON additives. Furthermore the sensitivity of these composite layers to CO, H2, NH3, methane, propane, propene and toluene (all exposed as admixtures with air) is lower than the sensitivity of pure SnO2-layers. These observations are well correlated with the results of gas consumption measurements on SnO2/NASICON powders by means of FTIR spectroscopy. In spite of the lack of surface analytical data, a model of surface chemical gas reactions based on a triple phase boundary (SnO2/NASICON/gas atmosphere) was developed, which explains the experimental observations qualitatively. It is assumed that the decrease of the electronic conductivity as observed in the presence of NASICON additives with increasing Na+-content is due to an enhanced electron depletion layer. This is formed in the SnO2 grains by Na+/e- interactions across the SnO2/NASICON-interface. The enormous enhancement of the sensitivity to polar organic molecules may be due to specific nucleophilic interactions with the Na+-ions and coupled Na+/e--interactions at the triple phase reaction sites.
|
Page generated in 0.0477 seconds