• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • Tagged with
  • 11
  • 11
  • 9
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Virtual-MIMO systems with compress-and-forward cooperation

Jiang, Jing January 2011 (has links)
Multiple-input multiple-output (MIMO) systems have recently emerged as one of the most significant wireless techniques, as they can greatly improve the channel capacity and link reliability of wireless communications. These benefits have encouraged extensive research on a virtual MIMO system where the transmitter has multiple antennas and each of the receivers has a single antenna. Single-antenna receivers can work together to form a virtual antenna array and reap some performance benefits of MIMO systems. The idea of receiver-side local cooperation is attractive for wireless networks since a wireless receiver may not have multiple antennas due to size and cost limitations. In this thesis we investigate a virtual-MIMO wireless system using the receiver-side cooperation with the compress-and-forward (CF) protocol. Firstly, to perform CF at the relay, we propose to use standard source coding techniques, based on the analysis of its expected rate bound and the tightness of the bound. We state upper bounds on the system error probabilities over block fading channels. With sufficient source coding rates, the cooperation of the receivers enables the virtual-MIMO system to achieve almost ideal MIMO performance. A comparison of ideal and non-ideal conference links within the receiver group is also investigated. Considering the short-range communication and using a channel-aware adaptive CF scheme, the impact of the non-ideal cooperation link is too slight to impair the system performance significantly. It is also evident that the practicality of CF cooperation will be greatly enhanced if a efficient source coding technique can be used at the relay. It is even more desirable that CF cooperation should not be unduly sensitive to carrier frequency offsets (CFOs). Thus this thesis then presents a practical study of these two issues. Codebook designs of the Voronoi VQ and the tree-structure vector quantization (TSVQ) to enable CF cooperation at the relay are firstly described. A comparison in terms of the codebook design complexity and encoding complexity is presented. It is shown that the TSVQ is much simpler to design and operate, and can achieve a favourable performance-complexity tradeoff. We then demonstrate that CFO can lead to significant performance degradation for the virtual MIMO system. To overcome it, it is proposed to maintain clock synchronization and jointly estimate the CFO between the relay and the destination. This approach is shown to provide a significant performance improvement. Finally, we extend the study to the minimum mean square error (MMSE) detection, as it has a lower complexity compared to maximum likelihood (ML) detection. A closed-form upper bound for the system error probability is derived, based on which we prove that the smallest singular value of the cooperative channel matrix determines the system error performance. Accordingly, an adaptive modulation and cooperation scheme is proposed, which uses the smallest singular value as the threshold strategy. Depending on the instantaneous channel conditions, the system could therefore adapt to choose a suitable modulation type for transmission and an appropriate quantization rate to perform CF cooperation. The adaptive modulation and cooperation scheme not only enables the system to achieve comparable performance to the case with fixed quantization rates, but also eliminates unnecessary complexity for quantization operations and conference link communication.
2

Investigation on the Compress-and-Forward Relay Scheme

Zhang, Jie January 2012 (has links)
The relay channel plays an integral role in network communication systems. An intermediate node acts as a relay to facilitate the communication between the source and the destination. If the rate of codewords is less than the capacity of the source-relay link, the relay can decode the source's messages and forward them to the destination. On the contrary, if the rate of codewords is greater than the capacity of the source-relay link, the relay cannot decode the messages. Nevertheless, the relay can still compress its observations and then send them to the destination. Obviously, if the relay-destination link is of a capacity high enough such that the relay's observations can be losslessly sent to the destination, then the maximum message rate can be achieved as if the relay and the destination can jointly decode. However, when the relay-destination link is of a limited capacity such that the relay's observation cannot be losslessly forwarded to the destination, then what is the maximum achievable rate from the source to the destination? This problem was formulated by Cover in another perspective [7], i.e., what is the minimum rate of the relay-destination link such that the maximum message rate can be achieved? We try to answer this Cover's problem in this thesis. First, a sufficient rate to achieve the maximum message rate can be obtained by Slepian-Wolf coding, which gives us an upper bound on the optimal relay-destination link rate. In this thesis, we show that under some channel conditions, this sufficient condition is also necessary, which implies that Slepian-Wolf coding is already optimal. Hence, the upper bound meets exactly the minimum value of the required rate. In our approach, we start with the standard converse proof. First, we present a necessary condition for achieving the maximum message rate in the single-letter form. Following the condition, we derive a theorem, which is named as "single-letter criterion". The "single-letter criterion" can be easily utilized to verify different channels. Then we show that for two special cases: when the source-relay link and the source-destination link of the relay channel are both binary symmetric channels (BSCs), and when they are both binary erasure channels (BECs), Slepian-Wolf coding is optimal in achieving the maximum message rate. Moreover, the maximum message rates of these two special channels are also calculated in this thesis.
3

Joint Distributed Detection and Estimation for Cooperative Communication in Cluster-Based Networks

Pu, Jyun-Wei 11 August 2008 (has links)
In this thesis, a new scheme based on the concept of compress-and-forward (CF) technique has been proposed. And expectation maximization (EM) algorithm is utilized to attain the aim of converging to a local optimum solution. According to the characteristic of EM algorithm, destination node would feed back a better decision to the relay node to be the next initial value. After the iteration, relay node would obtain a better detection result which would converge to a local optimum performance. At last the destination node would receive the optimum detection result from each relay and make a final decision. In the new structure, channel estimation can also be made at the relay node by EM algorithm, which is the reason why it is called joint distributed detection and estimation. Simulation shows that the proposed scheme would acquire an iteration gain at both the relay and destination node.
4

Investigation on the Compress-and-Forward Relay Scheme

Zhang, Jie January 2012 (has links)
The relay channel plays an integral role in network communication systems. An intermediate node acts as a relay to facilitate the communication between the source and the destination. If the rate of codewords is less than the capacity of the source-relay link, the relay can decode the source's messages and forward them to the destination. On the contrary, if the rate of codewords is greater than the capacity of the source-relay link, the relay cannot decode the messages. Nevertheless, the relay can still compress its observations and then send them to the destination. Obviously, if the relay-destination link is of a capacity high enough such that the relay's observations can be losslessly sent to the destination, then the maximum message rate can be achieved as if the relay and the destination can jointly decode. However, when the relay-destination link is of a limited capacity such that the relay's observation cannot be losslessly forwarded to the destination, then what is the maximum achievable rate from the source to the destination? This problem was formulated by Cover in another perspective [7], i.e., what is the minimum rate of the relay-destination link such that the maximum message rate can be achieved? We try to answer this Cover's problem in this thesis. First, a sufficient rate to achieve the maximum message rate can be obtained by Slepian-Wolf coding, which gives us an upper bound on the optimal relay-destination link rate. In this thesis, we show that under some channel conditions, this sufficient condition is also necessary, which implies that Slepian-Wolf coding is already optimal. Hence, the upper bound meets exactly the minimum value of the required rate. In our approach, we start with the standard converse proof. First, we present a necessary condition for achieving the maximum message rate in the single-letter form. Following the condition, we derive a theorem, which is named as "single-letter criterion". The "single-letter criterion" can be easily utilized to verify different channels. Then we show that for two special cases: when the source-relay link and the source-destination link of the relay channel are both binary symmetric channels (BSCs), and when they are both binary erasure channels (BECs), Slepian-Wolf coding is optimal in achieving the maximum message rate. Moreover, the maximum message rates of these two special channels are also calculated in this thesis.
5

Slepian-Wolf coded nested quantization (SEC-NQ) for Wyner-Ziv coding: high-rate performance analysis, code design, and application to cooperative networks

Liu, Zhixin 15 May 2009 (has links)
No description available.
6

Slepian-Wolf coded nested quantization (SEC-NQ) for Wyner-Ziv coding: high-rate performance analysis, code design, and application to cooperative networks

Liu, Zhixin 15 May 2009 (has links)
No description available.
7

Capacity Results for Wireless Cooperative Communications with Relay Conferencing

Huang, Chuan 2012 August 1900 (has links)
In this dissertation we consider cooperative communication systems with relay conferencing, where the relays own the capabilities to talk to their counterparts via either wired or wireless out-of-band links. In particular, we focus on the design of conferencing protocols incorporating the half-duplex relaying operations, and study the corresponding capacity upper and lower bounds for some typical channels and networks models, including the diamond relay channels (one source-destination pairs and two relays), large relay networks (one source-destination pairs and N relays), and interference relay channels (two source-destination pairs and two relays). First, for the diamond relay channels, we consider two different relaying schemes, i.e., simultaneous relaying (for which the two relays transmit and receive in the same time slot) and alternative relaying (for which the two relays exchange their transmit and receive modes alternatively over time), for which we obtain the respective achievable rates by using the decode-and-forward (DF), compress-and-forward (CF), and amplify-and-forward (AF) relaying schemes with DF and AF adopted the conferencing schemes. Moreover, we prove some capacity results under some special conditions. Second, we consider the large relay networks, and propose a "p-portion" conferencing scheme, where each relay can talk to the other "p-portion" of the relays. We obtain the DF and AF achievable rates by using the AF conferencing scheme. It is proved that relay conferencing increases the throughput scaling order of the DF relaying scheme from O(log(log(N ))) for the case without conferencing to O(log(N )); for the AF relaying scheme, it achieves the capacity upper bound under some conditions. Finally, we consider the two-hop interference relay channels, and obtain the AF achievable rates by adopting the AF conferencing scheme and two different decoding schemes at the destination, i.e., single-user decoding and joint decoding. For the derived joint source power allocation and relay combining problem, we develop some efficient iterative algorithms to compute the AF achievable rate regions. Moreover, we compare the achievable degree-of-freedom (DoF) performance of these two decoding schemes, and show that single-user decoding with interference cancellation at the relays is optimal.
8

Integer-forcing architectures: cloud-radio access networks, time-variation and interference alignment

El Bakoury, Islam 04 June 2019 (has links)
Next-generation wireless communication systems will need to contend with many active mobile devices, each of which will require a very high data rate. To cope with this growing demand, network deployments are becoming denser, leading to higher interference between active users. Conventional architectures aim to mitigate this interference through careful design of signaling and scheduling protocols. Unfortunately, these methods become less effective as the device density increases. One promising option is to enable cellular basestations (i.e., cell towers) to jointly process their received signals for decoding users’ data packets as well as to jointly encode their data packets to the users. This joint processing architecture is often enabled by a cloud radio access network that links the basestations to a central processing unit via dedicated connections. One of the main contributions of this thesis is a novel end-to-end communications architecture for cloud radio access networks as well as a detailed comparison to prior approaches, both via theoretical bounds and numerical simulations. Recent work has that the following high-level approach has numerous advantages: each basestation quantizes its observed signal and sends it to the central processing unit for decoding, which in turn generates signals for the basestations to transmit, and sends them quantized versions. This thesis follows an integer-forcing approach that uses the fact that, if codewords are drawn from a linear codebook, then their integer-linear combinations are themselves codewords. Overall, this architecture requires integer-forcing channel coding from the users to the central processing unit and back, which handles interference between the users’ codewords, as well as integer-forcing source coding from the basestations to the central processing unit and back, which handles correlations between the basestations’ analog signals. Prior work on integer-forcing has proposed and analyzed channel coding strategies as well as a source coding strategy for the basestations to the central processing unit, and this thesis proposes a source coding strategy for the other direction. Iterative algorithms are developed to optimize the parameters of the proposed architecture, which involve real-valued beamforming and equalization matrices and integer-valued coefficient matrices in a quadratic objective. Beyond the cloud radio setting, it is argued that the integer-forcing approach is a promising framework for interference alignment between multiple transmitter-receiver pairs. In this scenario, the goal is to align the interfering data streams so that, from the perspective of each receiver, there seems to be only a signal receiver. Integer-forcing interference alignment accomplishes this objective by having each receiver recover two linear combinations that can then be solved for the desired signal and the sum of the interference. Finally, this thesis investigates the impact of channel coherence on the integer-forcing strategy via numerical simulations.
9

Coding Schemes for Relay Networks

Nasiri Khormuji, Majid January 2011 (has links)
Cooperative communications by pooling available resources—for example, power and bandwidth—across the network, is a distributed solution for providing robust wireless transmission. Motivated by contemporary applications in multi-hop transmission and ad hoc networks, the classical three-node relay channel (RC) consisting of a source–destination pair and a relay node has received a renewed attention. One of the crucial aspects of the communication over relay networks (RNs) is the design of proper relaying protocols; that is, how the relay should take part in the transmission to meet a certain quality of service. In this dissertation, we address the design of reliable transmission strategies and quantification of the associated transmission rates over RNs. We consider three canonical examples of RNs: the classical RC, the multiple-access RC (MARC) and the two-way RC.We also investigate the three-node RC and MARC with state. The capacity of the aforementioned RNs is an open problem in general except for some special cases. In the thesis, we derive various capacity bounds, through which we also identify the capacity of some new classes of RNs. In particular, we introduce the class of state-decoupled RNs and prove that the noisy network coding is capacity achieving under certain conditions. In the thesis, we also study the effect of the memory length on the capacity of RNs. The investigated relaying protocols in the thesis can be categorized into two groups: protocols with a finite relay memory and those with infinite relay memory requirement. In particular, we consider the design of instantaneous relaying (also referred to as memoryless relaying) in which the output of the relay depends solely on the presently received signal at the relay. For optimizing the relay function, we present several algorithms constructed based on grid search and variational methods. Among other things, we surprisingly identify some classes of semi-deterministic RNs for which a properly constructed instantaneous relaying strategy achieves the capacity. We also show that the capacity of RNs can be increased by allowing the output of the relay to depend on the past received signals as well the current received signal at the relay. As an example, we propose a hybrid digital–analog scheme that outperforms the cutset upper bound for strictly causal relaying. / <p>QC 20110909</p>
10

Achievable rates for Gaussian Channels with multiple relays

Coso Sánchez, Aitor del 12 September 2008 (has links)
Los canales múltiple-entrada-múltiple-salida (MIMO) han sido ampliamente propuestos para superar los desvanecimientos aleatorios de canal en comunicaciones inalámbricas no selectivas en frecuencia. Basados en equipar tanto transmisores como receptores con múltiple antenas, sus ventajas son dobles. Por un lado, permiten al transmisor: i) concentrar la energía transmitida en una dirección-propia determinada, o ii) codificar entre antenas con el fin de superar desvanecimientos no conocidos de canal. Por otro lado, facilitan al receptor el muestreo de la señal en el dominio espacial. Esta operación, seguida por la combinación coherente de muestras, aumenta la relación señal a ruido de entrada al receptor. De esta forma, el procesado multi-antena es capaz de incrementar la capacidad (y la fiabilidad) de la transmisión en escenarios con alta dispersión.Desafortunadamente, no siempre es posible emplazar múltiples antenas en los dispositivos inalámbricos, debido a limitaciones de espacio y/o coste. Para estos casos, la manera más apropiada de explotar el procesado multi-antena es mediante retransmisión, consistente en disponer un conjunto de repetidores inalámbricos que asistan la comunicación entre un grupo de transmisores y un grupo de receptores, todos con una única antena. Con la ayuda de los repetidores, por tanto, los canales MIMO se pueden imitar de manera distribuida. Sin embargo, la capacidad exacta de las comunicaciones con repetidores (así como la manera en que este esquema funciona con respeto al MIMO equivalente) es todavía un problema no resuelto. A dicho problema dedicamos esta tesis.En particular, la presente disertación tiene como objetivo estudiar la capacidad de canales Gaussianos asistidos por múltiples repetidores paralelos. Dos repetidores se dicen paralelos si no existe conexión directa entre ellos, si bien ambos tienen conexión directa con la fuente y el destino de la comunicación. Nos centramos en el análisis de tres canales ampliamente conocidos: el canal punto-a-punto, el canal de múltiple-acceso y el canal de broadcast, y estudiamos su mejora de funcionamiento con repetidores. A lo largo de la tesis, se tomarán las siguientes hipótesis: i) operación full-duplex en los repetidores, ii) conocimiento de canal tanto en transmisión como en recepción, y iii) desvanecimiento sin memoria, e invariante en el tiempo.En primer lugar, analizamos el canal con múltiples repetidores paralelos, en el cual una única fuente se comunica con un único destino en presencia de N repetidores paralelos. Derivamos límites inferiores de la capacidad del canal por medio de las tasas de transmisión conseguibles con distintos protocolos: decodificar-y-enviar, decodificar-parcialmente-y-enviar, comprimir-y-enviar, y repetición lineal. Asimismo, con un fin comparativo, proveemos un límite superior, obtenido a través del Teorema de max-flow-min-cut. Finalmente, para el número de repetidores tendiendo a infinito, presentamos las leyes de crecimiento de todas las tasas de transmisión, así como la del límite superior.A continuación, la tesis se centra en el canal de múltiple-acceso (MAC) con múltiples repetidores paralelos. El canal consiste en múltiples usuarios comunicándose simultáneamente con un único destino en presencia de N repetidores paralelos. Derivamos una cota superior de la región de capacidad de dicho canal utilizando, de nuevo, el Teorema de max-flow-min-cut, y encontramos regiones de tasas de transmisión conseguibles mediante: decodificar-y-enviar, comprimir-y-enviar, y repetición lineal. Asimismo, se analiza el valor asintótico de dichas tasas de transmisión conseguibles, asumiendo el número de usuarios creciendo sin límite. Dicho estudio nos permite intuir el impacto de la diversidad multiusuario en redes de acceso con repetidores.Finalmente, la disertación considera el canal de broadcast (BC) con múltiples repetidores paralelos. En él, una única fuente se comunica con múltiples destinos en presencia de N repetidores paralelos. Para dicho canal, derivamos tasas de transmisión conseguibles dado: i) codificación de canal tipo dirty paper en la fuente, ii) decodificar-y-enviar, comprimir-y-enviar, y repetición lineal, respectivamente, en los repetidores. Además, para repetición lineal, demostramos que la dualidad MAC-BC se cumple. Es decir, la región de tasas de transmisión conseguibles en el BC es igual a aquélla del MAC con una limitación de potencia suma. Utilizando este resultado, se derivan algoritmos de asignación óptima de recursos basados en teoría de optimización convexa. / Multiple-input-multiple-output (MIMO) channels are extensively proposed as a means to overcome the random channel impairments of frequency-flat wireless communications. Based upon placing multiple antennas at both the transmitter and receiver sides of the communication, their virtues are twofold. On the one hand, they allow the transmitter: i) to concentrate the transmitted power onto a desired eigen-direction, or ii) tocode across antennas to overcome unknown channel fading. On the other hand, they permit the receiver to sample the signal on the space domain. This operation, followed by the coherent combination of samples, increases the signal-to-noise ratio at the input of the detector. In fine, MIMO processing is able to provide large capacity (and reliability) gains within rich-scattered scenarios.Nevertheless, equipping wireless handsets with multiple antennas is not always possible or worthwhile. Mainly, due to size and cost constraints, respectively. For these cases, the most appropriate manner to exploit multi-antenna processing is by means of relaying. This consists of a set of wireless relay nodes assisting the communication between a set of single-antenna sources and a set of single-antenna destinations. With the aid of relays, indeed, MIMO channels can be mimicked in a distributed way. However, the exact channel capacity of single-antenna communications with relays (and how this scheme performs with respect to the equivalent MIMO channel) is a long-standing open problem. To it we have devoted this thesis.In particular, the present dissertation aims at studying the capacity of Gaussian channels when assisted by multiple, parallel, relays. Two relays are said to be parallel if there is no direct link between them, while both have direct link from the source and towards the destination. We focus on three well-known channels: the point-to-point channel, the multi-access channel and the broadcast channel, and study their performance improvement with relays. All over the dissertation, the following assumptions are taken: i) full-duplex operation at the relays, ii) transmit and receive channel state information available at all network nodes, and iii) time-invariant, memory-less fading.Firstly, we analyze the multiple-parallel relay channel, where a single source communicates to a single destination in the presence of N parallel relays. The capacity of the channel is lower bounded by means of the achievable rates with different relaying protocols, i.e. decode-and-forward, partial decode-and-forward, compress-and-forward and linear relaying. Likewise, a capacity upper bound is provided for comparison, derived using the max-flow-min-cut Theorem. Finally, for number of relays growing to infinity, the scaling laws of all achievable rates are presented, as well as the one of the upper bound.Next, the dissertation focusses on the multi-access channel (MAC) with multiple-parallel relays. The channel consists of multiple users simultaneously communicating to a single destination in the presence of N parallel relay nodes. We bound the capacity region of the channel using, again, the max-flow-min-cut Theorem and find achievable rate regions by means of decode-and-forward, linear relaying and compress-and-forward. In addition, we analyze the asymptotic performance of the obtained achievable sum-rates, given the number of users growing without bound. Such a study allows us to grasp the impact of multi-user diversity on access networks with relays.Finally, the dissertation considers the broadcast channel (BC) with multiple parallel relays. This consists of a single source communicating to multiple receivers in the presence of N parallel relays. For the channel, we derive achievable rate regions considering: i) dirty paper encoding at the source, and ii) decode-and-forward, linear relaying and compress-and-forward, respectively, at the relays. Moreover, for linear relaying, we prove that MAC-BC duality holds. That is, the achievable rate region of the BC is equal to that of the MAC with a sum-power constraint. Using this result, the computation of the channel's weighted sum-rate with linear relaying is notably simplified. Likewise, convex resource allocation algorithms can be derived.

Page generated in 0.0441 seconds