Spelling suggestions: "subject:"compressed earth block"" "subject:"compressed earth clock""
1 |
Lap Splice Development Length of Rebar in Stabilized Hollow Interlocking Compressed Earth BlocksBowdey, Thomas S 01 December 2016 (has links)
This thesis investigates the tensile performance of unconfined lap splices in specimens constructed from interlocking compressed earth block (ICEB) units. All lap splice specimens were constructed from hollow ICEB half units with one side grouting channel. ICEB units used in this research were exclusively produced from the Soeng Thai Model BP6 block press. The BP6 block press is currently manufactured in Thailand under the guidance and direction of the Center of Vocational Building Technologies (CVBT). All ICEB units and grout constructed for this research were created from mix proportions of soil, sand, cement, and water. Rebar bar sizes were restricted to M10 (#3) and M13 (#4) for all lap splice specimens due to the limited area of the hollow 2-inch diameter rebar cavity of the ICEB unit. The limited size and strength of the ICEB units also made the use of larger bar diameters impractical. Three ICEB unit types of varying strengths (3.78 MPa, 7.81 MPa, and 11.38 MPa) and three grout types of varying strengths (1.35 MPa, 7.47 MPa, and 15.50 MPa) were developed and used to construct all specimens. The measured ICEB lap splice specimen strengths were compared against the predicted strength calculated from the Masonry Standards Joint Committee (MSJC). Findings suggested that the MSJC design equation did not adequately predict the lap splice strength of specimens, particularly for specimens constructed from weaker materials. The measured ICEB lap splice results were used to create a new ICEB lap splice design equation. This paper also investigates the compressive performance of fully grouted ICEB prisms constructed from the range of ICEB unit and grout strengths stated above. Findings suggested that the compressive strength of fully grouted ICEB prisms were exclusively controlled by the compressive strength of the ICEB units used to construct the prism. The strength of the grout had no discernable effect on the strength of the fully grouted prism. A design equation was proposed to calculate prism strengths based on measured strength results of ICEB units.
|
2 |
Investigation of Out-of-Plane Properties of Interlocking Compressed Earth Block WallsHerskedal, Nicholas Anthony 01 December 2012 (has links)
Interlocking compressed earth blocks (ICEBs) are cement stabilized soil blocks that allow for dry stacked construction. The incomplete understanding of the inelastic performance of ICEB building systems limits widespread acceptance of this structural system in earthquake prone areas. This thesis presents results from an experimental program designed to explore the behavior of ICEB walls, built according to current design practice in Indonesia and Thailand, and subjected to out-of-plane loading. A total of five reinforced and grouted ICEB walls were constructed and tested.
Results from experimentation show the current masonry design code, ACI 530, adequately predicts the yield strength of these walls. However, ACI 530 grossly over-predicts the ICEB wall stiffness. All tests showed flexural behavior and failure, except for one wall. A brittle failure was observed in one wall before reaching the predicted flexural strength, prompting a suggested maximum shear tie spacing. The testing results provide useful data for developing analytical models that predicts the seismic behavior of ICEB walls under out-of-plane loading.
A moment-curvature relationship was developed that accurately predicts the behavior of these walls in the elastic range as well as the inelastic range. By comparing the data provided by two walls of similar sizes, one including a pilaster and one without a pilaster, insight into stiffener elements was gained. Analysis of these two walls provides a limit on the length and height of ICEB walls without stiffener elements to prevent significant structural damage during a seismic event. In all, conclusions based on experimental data from ICEB out-of-plane loading tests are aimed to provide suggestions for ICEB construction in areas of high-seismicity.
|
3 |
Flexural Behavior of Interlocking Compressed Earth Block Shear Walls Subjected to In-Plane LoadingStirling, Bradley James 01 July 2011 (has links)
This thesis investigates the flexural behavior of interlocking compressed earth block (ICEB) shear walls. In-plane cyclic tests were conducted to evaluate the performance of three flexure dominant large scale ICEB specimens: a slim wall with a 2:1 height to width aspect ratio, a flanged wall, and a wall with an opening at the center. Following the experimental investigation, two types of analyses were conducted for calculating the ultimate strength of flexure dominant ICEB walls: a nonlinear static analysis model assuming lumped plasticity and a plastic analysis model. In addition, incremental dynamic analysis was conducted to address the seismic performance of flexure dominant ICEB buildings. Based on the database from the incremental dynamic analysis, the collapse potential of demonstration ICEB buildings were compared for the countries of interest.
|
4 |
In-Plane Shear Wall Performance As Affected by Compressed Earth Block ShapeAmbers, Steven Ellis 01 March 2017 (has links) (PDF)
This thesis investigates the in-plane shear performance of full-scale walls made from compressed earth blocks. Compressed earth blocks are a type of masonry where the blocks are composed of compressed soil and typically dry-stacked without mortar. Prior research has demonstrated that the in-plane shear strength of these blocks falls far short of capacities predicted by conventional masonry building codes, requiring new testing to develop effective and safe designs for seismic conditions. This thesis specifically studies the effects of block type and the use of grouted shear keys at the block head joints.
Three full-scale walls were constructed and tested under in-plane, cyclic loading. To compare the effect of block type on shear strength, one wall was constructed from Rhino blocks as used by the Center for Vocational Building Technology, while another used V-Lock blocks designed by the Vermeer Corporation. Apart from differences in size and interlock mechanism, the standard Rhino blocks have shear keys at the head joints which are not present on the V-Lock blocks. To examine the effect of these shear keys, a third wall was built from Rhino blocks with the shear keys removed.
The two standard block types displayed no major difference in strength that could not be attributed to grouted area or the presence/absence of the head joint shear keys. The Rhino block wall with shear keys reached a higher peak load relative to the grouted area but experienced a brittle drop in capacity after peaking, while the other two walls exhibited an extended loading plateau after the initial peak. All walls failed with cracking and block sliding along the main diagonals, a failure mode similar to conventional masonry. Proposals are made for modifying the equations for shear capacity from the Masonry Standards Joint Committee (MSJC) 2013 code for use in designing compressed earth block shear walls.
|
5 |
Comportement hygro-thermo-mécanique de matériaux structuraux pour la construction associant des fibres de kénaf à des terres argileuses / Hygro-thermo-mechanical behavior of structural materials for the construction associating kenaff fibers with clayed landsLaibi, Babatounde 21 December 2017 (has links)
Les briques de terre compressée (BTC) à la façon traditionnelle au Bénin présentent de piètres propriétés mécaniques, ce qui explique que les populations recourent aux parpaings de ciment relativement trop couteux et dont l’emploi affecte fortement les ressources en eau et en énergie. Ce travail propose des pistes d’amélioration des BTC pour l’écoconstruction par l’ajout de fibres végétales à des sols usités localement pour la construction. Cette stratégie permet de valoriser les matières premières minérales et végétales dans un domaine d’activités qui concerne une grande partie de la population. Dans un premier temps, un sol a été choisi d’après sa composition chimique, ses propriétés physiques, mécaniques et technologiques. Le choix de la fibre de kénaf pour le renforcement de la matrice minérale se justifie par ses excellentes propriétés mécaniques spécifiques et sa disponibilité à très faible coût. Les effets des fibres sur le comportement du sol au jeune âge, puis sur les comportements mécanique et hygrothermique des matériaux consolidés sous 5 MPa (pression applicable avec les équipements facilement disponibles au Bénin), ont été étudiés pour trois taux massiques de fibres (0,5%; 1% et 1,5% relativement au sol) dans différentes longueurs (5, 10, 20 et 30 mm). Les résultats indiquent une nette amélioration du comportement mécanique des BTC renforcés par le kénaf en termes des résistances à la flexion et à la compression, et de la résistance à la rupture catastrophique (comportement pseudo ductile). Les résultats les plus élevés sont obtenus pour une teneur de 0,5% de fibres de longueur 30 mm. L’ajout de ciment seul au sol fibré (taux de 3, 5 et 7%) ou de ciment associé au laitier de haut fourneau (taux de 3-5% et 5-10%, respectivement) permet en sus d’améliorer de façon importante la résistance à la prise d’eau. Les meilleurs résultats sont obtenus avec 5% de ciment et 10% de laitier de haut fourneau. Les mesures réalisées en chambre biclimatique ont permis de caractériser les matériaux comme paroi séparatrice, en étudiant les transferts de chaleur et de vapeur d’eau. Les résultats mettent en évidence l’effet significatif de l’ajout d’un liant au BTC : L’ajout d’un liant diminue le déphasage et augmente l’atténuation du matériau. Les meilleurs résultats de comportement hygrothermique sont obtenus pour le sol fibré.Cette étude démontre qu’il est possible de produire au Bénin, à partir de matières premières locales et avec des équipements peu onéreux, des éco-matériaux aux propriétés mécaniques et hygrothermiques satisfaisantes pour la construction d’habitat de type R+1. / Traditional Compressed Earth Blocks (CEB) in the Republic of Benin have poor mechanical properties, this justifies why people rely on relatively expensive cement blocks; the use of which greatly affects resources such as water and energy. In this work we have proposed ways to enhance CEB properties for eco-construction by adding plant fibers to locally used construction's soils. This strategy makes it possible to value mineral and vegetable raw materials in a field of an activity that is common to a large part of the population. At first, a soil was chosen according to its chemical composition, its physical, mechanical and technological properties. The choice of kenaf fiber for the reinforcement of the mineral matrix isjustified by its excellent specific mechanical properties and its availability at very low cost. The effects of fibers on soil behavior at young age and on the mechanical and hygrothermal behavior of consolidated materials under 5 MPa (pressure applicable with equipment readily available in Benin) were studied for three mass content of fibers relatively to the soil (0.5% 1% and 1.5%) and different lengths (5, 10, 20 and 30 mm). The results indicated a remarkable improvement in the mechanical behavior of kenaf-reinforced CEBs in terms of flexural and compressive strengths and tolerance to damage. The highest results were obtained with 0.5% of fibers 30 mm long. The addition of a binder (3, 5 and 7% of cement) or (3-5% and 5-10% of cement and blast furnace slag mix) allowed an important reduction in water uptake. The best mechanical results were obtained for a biocomposite made up with BAK soil, 0.5% of flax fibers 30 mm long and a mix of 5% cement and 10% blast furnace slag. Measurements carried out in a biclimatic chamber made it possible to characterize the hydric and thermal behavior of the soil-based materials. The addition of a binder decreases the phase shift and increases the attenuation of the material. These different results show that it is possible to produce in Benin with the available equipment, CEB with mechanical and hygrothermal properties sufficient enought for the construction of type R + 1 habitat.
|
6 |
Propuesta de adición de fibras de bagazo de caña en bloques de tierra comprimida estabilizados con cemento para su uso como unidad de albañilería en la construcción de viviendas rurales resistentes a las lluvias en la ciudad de Piura / Proposal for the addition of bagasse fibres in compressed earth blocks stabilised with cement for use as a masonry unit in the construction of rain-resistant rural housing in the city of piuraCabrera Vargas, Marlo Manuel, Tello Ormeño , Jose Daniel 21 February 2022 (has links)
La tierra es uno de los materiales de construcción más antiguos que ha sido utilizado de diferentes maneras para proporcionar construcciones sociales, económicas y ambientales. La realidad en nuestro país no es ajena y se refleja en la cantidad de viviendas de tierra en las zonas rurales de la costa y sierra. No obstante, al evaluar su comportamiento frente a los fenómenos climáticos se ha constatado que estas viviendas han sufrido grandes estragos al estar expuestas a intensas lluvias, perdiendo su capacidad portante.
Este escenario es una oportunidad para que nuevas investigaciones desarrollen técnicas alternativas con tierra. Entre ellas, la presente investigación aborda a los bloques de tierra comprimida (BTC), una versión moderna del adobe, estabilizados químicamente con cemento y fibras de bagazo de caña de azúcar. Para validar y comparar su comportamiento, se fabricaron los BTC y fueron sometidos a pruebas físicas y mecánicas en estado seco y saturado, además de ser evaluadas económicamente. La dosis de 4% de cemento y 0.75% de fibra de bagazo de caña tuvo el mejor desempeño de resistencia a la compresión y flexión en estado seco (2.31 y 0.66 Mpa respectivamente) como también en estado saturado (1.65 y 0.41 Mpa respectivamente), además de tener daños leves y una menor absorción de agua en las pruebas físicas. Por otro lado, se descubrió que al aumentar la cantidad de fibra a 1% en la mezcla suelo-cemento el comportamiento mecánico del BTC se mantenía estable y en algunos casos tiende a disminuir su resistencia, es decir que el porcentaje de fibra más óptimo en términos mecánicos y físicos para el BTC es de 0.75%. / Earth is one of the oldest building materials that has been used in different ways to provide social, economic and environmental constructions. The reality in our country is no different and is reflected in the number of earthen houses in the rural areas of the coast and highlands. However, when evaluating their behavior in the face of climatic phenomena, it has been found that these dwellings have suffered great damage when exposed to heavy rains, losing their load-bearing capacity.
This scenario is an opportunity for new research to develop alternative earth techniques. Among them, the present research addresses compressed earth blocks (CEB), a modern version of adobe, chemically stabilized with cement and sugar cane bagasse fibers. To validate and compare their performance, BTCs were manufactured and subjected to physical and mechanical tests in dry and saturated states, as well as being economically evaluated. The dose of 4% cement and 0.75% bagasse fiber had the best compressive and flexural strength performance in dry state (2.31 and 0.66 Mpa respectively) as well as in saturated state (1.65 and 0.41 Mpa respectively), in addition to having slight damage and lower water absorption in the physical tests. On the other hand, it was found that by increasing the amount of fiber to 1% in the soil-cement mixture, the mechanical behavior of BTC remained stable and in some cases tended to decrease its strength, i.e. the most optimal percentage of fiber in mechanical and physical terms for BTC is 0.75%. / Tesis
|
Page generated in 0.0585 seconds