Spelling suggestions: "subject:"computação efetiva"" "subject:"computação afetiva""
21 |
Os efeitos das revisões críticas online sobre o mercado cinematográfico americano / The effects of online critical reviews over the American movie marketSouza, Thais Luiza Donega e 26 June 2017 (has links)
O mercado cinematográfico pode ser caracterizado como uma indústria de entretenimento com a produção de bens de informação que são também bens de experiência, cuja qualidade só é conhecida após o consumo. Deste modo, a revisão crítica se torna importante para induzir seu consumo, fornecendo previamente algum grau de informação sobre a qualidade do bem. Segue-se o trabalho de Reinstein e Snyder (2005) para determinar se as revisões críticas conduzidas por consumidores e por críticos profissionais online afetam o tempo de exibição de filmes no mercado americano de cinema, medido em quantidades de semanas, conforme modelos de duração/sobrevivência na literatura. Para esta finalidade foi gerado, a partir de sites de cinemas americanos (Box Office Mojo e Rotten Tomatoes), um banco de dados extremamente rico com informações semanais de todos os filmes disponíveis no cinema americano de 2004 a 2015. Especificamente, investigou-se os efeitos das revisões críticas de críticos profissionais de primeira linha (Tops) e de consumidores, conforme a média das notas atribuídas na semana de lançamento de cada filme. No que se refere à avaliação dos consumidores foi aplicada a computação afetiva, que reconhece o sentimento e a emoção em suas resenhas online para captar o efeito boca a boca potencializado pelas mídias sociais e fornecendo, portanto, uma análise mais profunda do boca a boca online. O estudo controla por possíveis problemas de endogeneidade decorrente de simultaneidade, usando as críticas somente antes e durante a semana de lançamento dos filmes. Os resultados sugerem que os críticos profissionais exercem grande influência no tempo de duração dos filmes em cartaz, bem como a positividade dos consumidores em relação ao filme. No entanto, o efeito dos críticos profissionais é em média 3 vezes maior do que dos consumidores. Adicionalmente, pode-se observar que algumas emoções afetam a expectativa de vida dos filmes a depender do gênero do mesmo / The movie market may be considered as entertainment industry, which produces experience goods that is also information goods, whose quality is only known only after consumption. Thus, critical reviews becomes important to induce consumption, since it provides some level of information about product quality. We follow Reinstein and Snyder (2005) works in order to determine if experts and consumers online critical reviews affect the survival time of movies at the American movie market, measured by number of weeks, according to survival analysis models in the literature. For this purpose, an extremely rich database with weekly information on all the films available in American cinema from 2004 to 2015 was generated from American movie sites (Box Office Mojo and Rotten Tomatoes). Specifically, we investigate the effects of critical reviews from top professionals and from consumers, according to the average ratings assigned in each movie\'s release week. As far as consumer assessment was concerned, affective computing was applied, which recognizes the sentiment (sentiment analysis) and emotion (emotion mining) in their online reviews to capture the word-of-mouth effect boosted by social media. The study controls for possible problems of endogeneity due to simultaneity, using the criticisms before and during the week of release of the films. The results suggest that the professional critics exert a great influence on the duration of the films in exhibition, as well as the positivity of the consumers in relation to the film. Thus, the effect of professionals are 5 times greater, generally, than the effect of the consumer critics. Additionally, it can be observed that some emotions affect movie life expectancy depending on the its genre
|
22 |
Os efeitos das revisões críticas online sobre o mercado cinematográfico americano / The effects of online critical reviews over the American movie marketThais Luiza Donega e Souza 26 June 2017 (has links)
O mercado cinematográfico pode ser caracterizado como uma indústria de entretenimento com a produção de bens de informação que são também bens de experiência, cuja qualidade só é conhecida após o consumo. Deste modo, a revisão crítica se torna importante para induzir seu consumo, fornecendo previamente algum grau de informação sobre a qualidade do bem. Segue-se o trabalho de Reinstein e Snyder (2005) para determinar se as revisões críticas conduzidas por consumidores e por críticos profissionais online afetam o tempo de exibição de filmes no mercado americano de cinema, medido em quantidades de semanas, conforme modelos de duração/sobrevivência na literatura. Para esta finalidade foi gerado, a partir de sites de cinemas americanos (Box Office Mojo e Rotten Tomatoes), um banco de dados extremamente rico com informações semanais de todos os filmes disponíveis no cinema americano de 2004 a 2015. Especificamente, investigou-se os efeitos das revisões críticas de críticos profissionais de primeira linha (Tops) e de consumidores, conforme a média das notas atribuídas na semana de lançamento de cada filme. No que se refere à avaliação dos consumidores foi aplicada a computação afetiva, que reconhece o sentimento e a emoção em suas resenhas online para captar o efeito boca a boca potencializado pelas mídias sociais e fornecendo, portanto, uma análise mais profunda do boca a boca online. O estudo controla por possíveis problemas de endogeneidade decorrente de simultaneidade, usando as críticas somente antes e durante a semana de lançamento dos filmes. Os resultados sugerem que os críticos profissionais exercem grande influência no tempo de duração dos filmes em cartaz, bem como a positividade dos consumidores em relação ao filme. No entanto, o efeito dos críticos profissionais é em média 3 vezes maior do que dos consumidores. Adicionalmente, pode-se observar que algumas emoções afetam a expectativa de vida dos filmes a depender do gênero do mesmo / The movie market may be considered as entertainment industry, which produces experience goods that is also information goods, whose quality is only known only after consumption. Thus, critical reviews becomes important to induce consumption, since it provides some level of information about product quality. We follow Reinstein and Snyder (2005) works in order to determine if experts and consumers online critical reviews affect the survival time of movies at the American movie market, measured by number of weeks, according to survival analysis models in the literature. For this purpose, an extremely rich database with weekly information on all the films available in American cinema from 2004 to 2015 was generated from American movie sites (Box Office Mojo and Rotten Tomatoes). Specifically, we investigate the effects of critical reviews from top professionals and from consumers, according to the average ratings assigned in each movie\'s release week. As far as consumer assessment was concerned, affective computing was applied, which recognizes the sentiment (sentiment analysis) and emotion (emotion mining) in their online reviews to capture the word-of-mouth effect boosted by social media. The study controls for possible problems of endogeneity due to simultaneity, using the criticisms before and during the week of release of the films. The results suggest that the professional critics exert a great influence on the duration of the films in exhibition, as well as the positivity of the consumers in relation to the film. Thus, the effect of professionals are 5 times greater, generally, than the effect of the consumer critics. Additionally, it can be observed that some emotions affect movie life expectancy depending on the its genre
|
23 |
AFFECTIVE-RECOMMENDER: UM SISTEMA DE RECOMENDAÇÃO SENSÍVEL AO ESTADO AFETIVO DO USUÁRIO / AFFECTIVE-RECOMMENDER: A RECOMMENDATION SYSTEM AWARE TO USER S AFFECTIVE STATEPereira, Adriano 21 December 2012 (has links)
Pervasive computing systems aim to improve human-computer interaction, using users
situation variables that define context. The boom of Internet makes growing availables items to
choose, giving cost in made decision process. Affective Computing has in its goals to identify
user s affective/emotional state in a computing interaction, in order to respond to it automatically.
Recommendation systems help made decision selecting and suggesting items in scenarios
where there are huge information volume, using, traditionally, users prefferences data. This
process could be enhanced using context information (as physical, environmental or social), rising
the Context-Aware Recommendation Systems. Due to emotions importance in our lives, that
could be treated with Affective Computing, this work uses affective context as context variable,
in recommendation process, proposing the Affective-Recommender a recommendation system
that uses user s affective state to select and to suggest items. The system s model has four components:
(i) detector, that identifies affective-state, using the multidimesional Pleasure, Arousal
and Dominance model, and Self-Assessment Maniking instrument, that asks user to inform how
he/she feels; (ii) recommender, that selects and suggests items, using a collaborative-filtering
based approache, in which user s prefference to an item is his/her affective reaction to it as
the affective state detected after access; (iii) application, which interacts with user, shows probable
most interesting items defined by recommender, and requests affect identification when it
is necessarly; and (iv) data base, that stores available items and users prefferences. As a use
case, Affective-Recommender is used in a e-learning scenario, due to personalization obtained
with recommendation and emotion importances in learning process. The system was implemented
over Moodle LMS. To exposes its operation, a use scenario was organized, simulating
recommendation process. In order to check system applicability, with students opinion about to
inform how he/she feels and to receive suggestions, it was applied in three UFSM graduation
courses classes, and then it were analyzed data access and the answers to a sent questionnaire.
As results, it was perceived that students were able to inform how they feel, and that occured
changes in their affecive state, based on accessed item, although they don t see improvements
with the recommendation, due to small data available to process and showr time of application. / Sistemas de Computação Pervasiva buscam melhorar a interação humano-computador
através do uso de variáveis da situação do usuário que definem o contexto. A explosão da Internet
e das tecnologias de informação e comunicação torna crescente a quantidade de itens
disponíveis para a escolha, impondo custo para o usuário no processo de tomada de decisão.
A Computação Afetiva tem entre seus objetivos identificar o estado emocional/afetivo do usuário
durante uma interação computacional, para automaticamente responder a ele. Já Sistemas
de Recomendação auxiliam a tomada de decisão, selecionando e sugerindo itens em situações
onde há grandes volumes de informação, tradicionalmente, utilizando as preferências dos usuários
para a seleção e sugestão. Esse processo pode ser melhorado com o uso do contexto (físico,
ambiental, social), surgindo os Sistemas de Recomendação Sensíveis ao Contexto. Tendo em
vista a importância das emoções em nossas vidas, e a possibilidade de tratamento delas com a
Computação Afetiva, este trabalho utiliza o contexto afetivo do usuário como variável da situação,
durante o processo de recomendação, propondo o Affective-Recommender um sistema
de recomendação que faz uso do estado afetivo do usuário para selecionar e sugerir itens. O
sistema foi modelado a partir de quatro componentes: (i) detector, que identifica o estado afetivo,
utilizando o modelo multidimensional Pleasure, Arousal e Dominance e o instrumento
Self-Assessment Manikin, solicitando que o usuário informe como se sente; (ii) recomendador,
que escolhe e sugere itens, utilizando uma abordagem baseada em filtragem colaborativa,
em que a preferência de um usuário para um item é vista como sua reação estado afetivo
detectado após o contato ao item; (iii) aplicação, que interage com o usuário, exibe os itens
de provável maior interesse definidos pelo recomendador, e solicita que o estado seja identificado,
sempre que necessário; e (iv) base de dados, que armazena os itens disponíveis para
serem sugeridos e as preferências de cada usuário. Como um caso de uso e prova de conceito,
o Affective-Recommender é empregado em um cenário de e-learning, devido à importância
da personalização, obtida com a recomendação, e das emoções no processo de aprendizagem.
O sistema foi implementado utilizando-se como base o AVEA Moodle. Para expor o funcionamento,
estruturou-se um cenário de uso, simulando-se o processo de recomendação. Para
verificar a aplicabilidade real do sistema, ele foi empregado em três turmas de cursos de graduação
da UFSM, sendo analisados dados de acesso e aplicado um questionário para identificar
as impressões do alunos quanto a informar como se sentem e receber recomendações. Como
resultados, percebeu-se que os alunos conseguiram informar seus estados afetivos, e que houve
uma mudança em neste estado com base no item acessado, embora não tenham vislumbrado
melhorias com as recomendações, em virtude da pequena quantidade de dados disponível para
processamento e do curto tempo de aplicação.
|
Page generated in 0.1933 seconds