• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 11
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 97
  • 97
  • 69
  • 36
  • 31
  • 30
  • 19
  • 18
  • 17
  • 17
  • 17
  • 14
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Um atalho para evolução quântica adiabática e dinâmica de correlações não-clássicas

Trujillo, Alba Marcela Herrera January 2013 (has links)
Orientador: Roberto Menezes Serra / Dissertação (mestrado) - Universidade Federal do ABC. Programa de Pós-Graduação em Física, 2013
12

Análise do efeito de entropia em computação quântica : simulações em ambiente paralelo /

Moretti, Rafael Henrique January 2015 (has links)
Orientador: Geraldo Francisco Donegá Zafalon / Coorientador: Manoel Ferreira Borges Neto / Banca: Mário Luiz Tronco / Banca: Wladimir Seixas / Resumo: O crescente desenvolvimento tecnológico tem trazido a humanidade grandes benefícios, nas mais diversas áreas. De modo a dar continuidade a esse desenvolvimento, novas frentes de pesquisas vêm surgindo, em busca do domínio dessas tecnologias emergentes. Os limites físicos da computação clássica, baseada nos fenômenos eletromagnéticos, estão sendo alcançados e a computação quântica surge como uma possível solução para esses limites, bem como para apresentar um novo panorama para a computação, devido ao seu grande potencial. A fim de buscar um maior entendimento dos fenômenos que envolvem a computação quântica em uma transmissão de dados, em específico o fenômeno do emaranhamento, no presente trabalho apresenta-se um levantamento teórico sobre mecânica quântica, informação, computação e entropias quânticas, bem como computação paralela e MPI, propondo-se uma simulação com implementação em ambiente paralelo sobre o efeito da entropia de emaranhamento dos fótons em uma transmissão de dados. Além disso, realiza-se a comparação com a implementação em um ambiente de um único processador / Abstract: The increasing technological development has brought great bene ts to humanity, in several areas. In order to continue this development, new research areas are emerging to reach new technologies. The physical limits of classical computing, based on electromagnetic phenomena are being achieved and quantum computing emerges as a possible solution to these limits, as well as to introduce a new scenario for computing, due to its great potential. In order to get a better understanding of phenomena involving quantum computing in a data transmission, in particular the phenomenon of entanglement, this work presents a theoretical quantum mechanics, information, computing and quantum entropies, as well as parallel computing and MPI, proposing a simulation with implementation in parallel environment on the e ect of the entropy of entanglement of photons in data transmission and comparison with implementation in a single processor environment / Mestre
13

Coprocessador para operações quânticas. / Coprocessor for quantum operations.

Sérgio de Souza Raposo 27 February 2012 (has links)
Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro / A demanda crescente por poder computacional estimulou a pesquisa e desenvolvimento de processadores digitais cada vez mais densos em termos de transistores e com clock mais rápido, porém não podendo desconsiderar aspectos limitantes como consumo, dissipação de calor, complexidade fabril e valor comercial. Em outra linha de tratamento da informação, está a computação quântica, que tem como repositório elementar de armazenamento a versão quântica do bit, o q-bit ou quantum bit, guardando a superposição de dois estados, diferentemente do bit clássico, o qual registra apenas um dos estados. Simuladores quânticos, executáveis em computadores convencionais, possibilitam a execução de algoritmos quânticos mas, devido ao fato de serem produtos de software, estão sujeitos à redução de desempenho em razão do modelo computacional e limitações de memória. Esta Dissertação trata de uma versão implementável em hardware de um coprocessador para simulação de operações quânticas, utilizando uma arquitetura dedicada à aplicação, com possibilidade de explorar o paralelismo por replicação de componentes e pipeline. A arquitetura inclui uma memória de estado quântico, na qual são armazenados os estados individuais e grupais dos q-bits; uma memória de rascunho, onde serão armazenados os operadores quânticos para dois ou mais q-bits construídos em tempo de execução; uma unidade de cálculo, responsável pela execução de produtos de números complexos, base dos produtos tensoriais e matriciais necessários à execução das operações quânticas; uma unidade de medição, necessária à determinação do estado quântico da máquina; e, uma unidade de controle, que permite controlar a operação correta dos componente da via de dados, utilizando um microprograma e alguns outros componentes auxiliares. / The growing demand for computational power has pushed the research and development of digital processors that are even more dense in terms of transistor number and faster clock rate, without ignoring concerning constraints such as energy consumption, heat dissipation, manufacturing complexity and final market costs. Another approach to deal with digital information is quantum computation, that relies on a basic storage entity that keeps a superposition of the two possible states, in contrast with of a bit of a conventional computer, that stores only one of these two states. Simulators for quantum computation can run quantum algorithms on conventional computers. However, since these are developed using a software implementation, performance limitation occur due to the classical computational model used. This dissertation presents an implementable hardware architecture of a specialized coprocessor that simulates quantum operations, employing an application-specific design that allows parallel processing based on component replication and pipelining. The proposed architecture includes a quantum state memory, where individual and joined states of q-bits are stored; a scratch memory, dedicated to storing quantum operators that are built at runtime; the arithmetic unit, that performs complex numbers multiplications, to allow the full computation of tensorial and scalar products of matrices, required to implement quantum operators; the measurement unit, that is required to perform quantum state observation; and the control unit, that controls proper operation of the datapath components using a microprogram and some other auxiliary components.
14

Teoria de controle ótimo em sistemas abertos /

Cervati Neto, Alaor. January 2018 (has links)
Orientador: Felipe Fernandes Fanchini / Banca: André Luiz Malvezzi / Banca: Alexandre Luis Magalhães Levada / Resumo: A teoria de informação e computação quântica é uma área de pesquisa que vem crescendo de maneira acentuada nos últimos anos devido aos inúmeros avanços tecnológicos que a acompanham. Neste mestrado começamos nossos estudos nesta área de pesquisa onde nos introduzimos e aprofundamos em seus aspectos intrigantes e peculiares. Dada nossa formação inicial na área de ciências da computação, inicialmente nos dedicamos a entender os aspectos fundamentais da mecânica quântica, assim como da teoria de informação e computação quântica. Focamos principalmente nos sistemas quânticos abertos, visto que o maior obstáculo a ser superado para o desenvolvimento destes computadores é o efeito deletério do meio ambiente. A princípio, concentramos nossos estudos nos ditos processos não-Markovianos, que apresentam efeitos de memória. Aprendemos sobre as novas medidas de não-Markovianidade, principalmente as medidas baseadas na dinâmica do emaranhamento e na dinâmica da informação mútua. Conseguimos publicar nosso primeiro resultado, onde provamos a inequivalência destas duas medidas de não-Markovianidade. De fato, mostramos que tais medidas, em geral, podem discordar sobre o tipo de processo dissipativo, sendo que uma pode reconhecê-lo como Markoviano enquanto outra pode reconhecê-lo como não-Markoviano. Como mostramos, esta inequivalência está diretamente relacionada com o refluxo de informação do meio ambiente para o sistema, e como mensuramos tal informação nestas duas medidas distintas de... / Abstract: Quantum information theory and computation is a field of research that has been growing acutely in the past few years due to the many technological improvements it follows. In this masters' course, we began our studies in this area of research where we were introduced and immersed in its intriguing and peculiar aspects. Given our initial formation in computer science, we initially dedicated ourselves to understanding the fundamentals of quantum mechanics, as well as of information theory and quantum computation. Our main focus were open quantum systems, since the greatest obstacle to the development of these computers is the harmful effect of the environment. At first, we concentrated our studies in the so called non-Markovian processes, that show memory effects. We learned about the new non-Markovianity measurements, mainly those based on the dynamics of entanglement and mutual information. We managed to publish our first result, where we proved the inequivalence of these two measurements of non-Markovianity. Indeed, we showed that such measurements, in general, can disagree about the dissipative process, so that one can regard it as Markovian and the other as non-Markovian. As we demonstrated, this inequivalence is directly related to the information back-flow from the environment to the system, and how this information is measured by each of the two distinct measurements. Finally, in the last stage of our studies, our goal was to find a way to optimize the control of the logical ... / Mestre
15

Sistemas de comunicação quântica usando interferômetro de Sagnac e dinâmica do entrelaçamento de estados bipartites de qubitis em canais ruidosos / Quantum communication systems using interferometer of Sagnac and dynamics of the entanglement of qubitis bipartites states in noisy channel

Brito, Wellington Alves de 02 September 2006 (has links)
BRITO, W. A. Sistemas de comunicação quântica usando interferômetro de Sagnac e dinâmica do entrelaçamento de estados bipartites de qubitis em canais ruidosos. 2006. 118 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2006. / Submitted by Marlene Sousa (mmarlene@ufc.br) on 2016-04-05T12:56:40Z No. of bitstreams: 1 2006_dis_wabrito.pdf: 5800986 bytes, checksum: a2ca11972d88d3fb51ab0413e94cbf42 (MD5) / Approved for entry into archive by Marlene Sousa(mmarlene@ufc.br) on 2016-04-06T16:48:25Z (GMT) No. of bitstreams: 1 2006_dis_wabrito.pdf: 5800986 bytes, checksum: a2ca11972d88d3fb51ab0413e94cbf42 (MD5) / Made available in DSpace on 2016-04-06T16:48:25Z (GMT). No. of bitstreams: 1 2006_dis_wabrito.pdf: 5800986 bytes, checksum: a2ca11972d88d3fb51ab0413e94cbf42 (MD5) Previous issue date: 2006-09-02 / This work is divided into two parts. In the first one, the use of the Sagnac interferometer in quantum information is analyzed applying it in three problems: interaction-free measurement, quantum key distribution, and secret sharing. For the interaction-free measurement two systems using Sagnac interferometer were proposed. Considering ideal detectors and loss less devices, one of them has a success probability of 25% for each photon used while the other presents the probability of getting success to detect the presence of the object close to 100% for each photon used. For quantum key distribution, it was proposed a different setup, where the main difference is that the pulse sent by the transmitter does not come back to him/her as happen with the systems based on Sagnac proposed before. This avoids the Trojan horse attack. Finally, it was proposed an optical configuration where it is possible to share a secret among five users, locally distant, that could be used only when all five persons agreed. The second part of this dissertation presents an analytical and numerical study of the entanglement variation of bipartite states of qubits during propagation in a quantum noisy channel. Particularly, it was found an exactly formula which relates the entanglement of states in the input and output of the channel, when the input state is pure and the channel is modeled by a canonical unitary operation. / O presente trabalho é divido em duas partes. Na primeira, a utilização do interferômetro de Sagnac em informação quântica é analisada através da aplicação do mesmo em três problemas: Medição livre de interação, distribuição quântica de chaves e compartilhamento de segredo. Para a medição livre de interação, dois sistemas usando o Sagnac foram propostos. Considerando detectores ideais e ausência de perdas, um deles apresenta probabilidade de sucesso de 25% por fóton consumido, enquanto que o segundo apresenta probabilidade de determinar corretamente a presença do objeto próxima a 100% por fóton consumido. Para a distribuição quântica de chaves foi proposta uma configuração diferente das existentes, sendo a principal diferença a ausência de retorno do pulso enviado, como ocorre nos sistemas com Sagnac anteriormente propostos. Isto evita ataques do tipo Cavalo de Tróia. Por fim, foi proposta uma configuração óptica que permite que um segredo compartilhado por cinco pessoas, localmente distantes, seja usado apenas quando todos os cinco concordarem. A segunda parte da dissertação apresenta um estudo analítico e numérico da variação do entrelaçamento de estados bipartites de qubits quando da propagação dos mesmos em canais quânticos ruidosos. Em particular, foi encontrada uma fórmula exata que relaciona os entrelaçamentos dos estados na entrada e saída do canal, quando o estado na entrada é puro e o canal é modelado pela interação do estado bipartite (sinal) com um qubit (estado do canal) através de uma operação unitária canônica.
16

Coprocessador para operações quânticas. / Coprocessor for quantum operations.

Sérgio de Souza Raposo 27 February 2012 (has links)
Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro / A demanda crescente por poder computacional estimulou a pesquisa e desenvolvimento de processadores digitais cada vez mais densos em termos de transistores e com clock mais rápido, porém não podendo desconsiderar aspectos limitantes como consumo, dissipação de calor, complexidade fabril e valor comercial. Em outra linha de tratamento da informação, está a computação quântica, que tem como repositório elementar de armazenamento a versão quântica do bit, o q-bit ou quantum bit, guardando a superposição de dois estados, diferentemente do bit clássico, o qual registra apenas um dos estados. Simuladores quânticos, executáveis em computadores convencionais, possibilitam a execução de algoritmos quânticos mas, devido ao fato de serem produtos de software, estão sujeitos à redução de desempenho em razão do modelo computacional e limitações de memória. Esta Dissertação trata de uma versão implementável em hardware de um coprocessador para simulação de operações quânticas, utilizando uma arquitetura dedicada à aplicação, com possibilidade de explorar o paralelismo por replicação de componentes e pipeline. A arquitetura inclui uma memória de estado quântico, na qual são armazenados os estados individuais e grupais dos q-bits; uma memória de rascunho, onde serão armazenados os operadores quânticos para dois ou mais q-bits construídos em tempo de execução; uma unidade de cálculo, responsável pela execução de produtos de números complexos, base dos produtos tensoriais e matriciais necessários à execução das operações quânticas; uma unidade de medição, necessária à determinação do estado quântico da máquina; e, uma unidade de controle, que permite controlar a operação correta dos componente da via de dados, utilizando um microprograma e alguns outros componentes auxiliares. / The growing demand for computational power has pushed the research and development of digital processors that are even more dense in terms of transistor number and faster clock rate, without ignoring concerning constraints such as energy consumption, heat dissipation, manufacturing complexity and final market costs. Another approach to deal with digital information is quantum computation, that relies on a basic storage entity that keeps a superposition of the two possible states, in contrast with of a bit of a conventional computer, that stores only one of these two states. Simulators for quantum computation can run quantum algorithms on conventional computers. However, since these are developed using a software implementation, performance limitation occur due to the classical computational model used. This dissertation presents an implementable hardware architecture of a specialized coprocessor that simulates quantum operations, employing an application-specific design that allows parallel processing based on component replication and pipelining. The proposed architecture includes a quantum state memory, where individual and joined states of q-bits are stored; a scratch memory, dedicated to storing quantum operators that are built at runtime; the arithmetic unit, that performs complex numbers multiplications, to allow the full computation of tensorial and scalar products of matrices, required to implement quantum operators; the measurement unit, that is required to perform quantum state observation; and the control unit, that controls proper operation of the datapath components using a microprogram and some other auxiliary components.
17

Engenharia de hamiltonianos e aplicações em teoria da informação quântica

Moraes Neto, Gentil Dias de 28 March 2008 (has links)
Made available in DSpace on 2016-06-02T20:16:43Z (GMT). No. of bitstreams: 1 1830.pdf: 1055624 bytes, checksum: d961947950314e3c5ea3a35688a70b9c (MD5) Previous issue date: 2008-03-28 / Financiadora de Estudos e Projetos / Nesta dissertação abordamos o tema da engenharia de Hamiltonianos e sua utilização para a implementação de portas lógicas quânticas. Especificamente, tratamos três sistemas distintos: no primeiro, consideramos um íon armadilhado numa cavidade, com seus níveis eletrônicos sujeitos a um processo de amplificação linear; nos segundo, retomando o sistema de um íon armadilhado numa cavidade, consideramos que a interação da matéria com os campos de radiação e vibração dão-se de forma dispersiva. O primeiro sistema foi utilizado para a engenharia de interações entre os campos de radiação e vibração. Aplicações dos Hamiltonianos efetivos construídos são apresentadas. Através do segundo sistema mostramos como construir portas de fase e CNOT, pelas quais utililizamos os estados vibracionais para o controle dos estados eletrônicos e vice-versa. Através da duplicação desse sistema, mostramos como teletransportar o estado vibracional de um íon para outro armadilhados em cavidades distintas. Notamos que o nosso protocolo de teletransporte prescinde da necessidade de mapear o estado vibracional a ser teletransportado para o modo da cavidade, diminuindo o número de passos necessários para a efetivação do processo. No terceiro sistema mostramos como implementar portas de fase e CNOT que se utilizam dos estados eletrônicos (vibracionais) de um dos íons para o controle dos estados vibracionais (eletrônicos) do outro. Por fim, mostramos como preparar os estados da base de Bell para os graus de liberdade vibracionais de ambos os íons.
18

Análise do efeito de entropia em computação quântica: simulações em ambiente paralelo

Moretti, Rafael Henrique [UNESP] 27 February 2015 (has links) (PDF)
Made available in DSpace on 2015-09-17T15:25:29Z (GMT). No. of bitstreams: 0 Previous issue date: 2015-02-27. Added 1 bitstream(s) on 2015-09-17T15:48:46Z : No. of bitstreams: 1 000846680_20160701.pdf: 68569 bytes, checksum: 3d6e053b24d4ca9caa9a50165bb615cd (MD5) Bitstreams deleted on 2016-06-15T18:56:30Z: 000846680_20160701_sub.pdf, 000846680_sub.pdf,. Added 1 bitstream(s) on 2016-06-15T18:57:10Z : No. of bitstreams: 1 000846680_20160701.pdf: 169837 bytes, checksum: c2078ccda666da39cc5ae2f7a2313e77 (MD5) Bitstreams deleted on 2016-07-01T13:02:16Z: 000846680_20160701.pdf,. Added 1 bitstream(s) on 2016-07-01T13:03:15Z : No. of bitstreams: 1 000846680.pdf: 1186537 bytes, checksum: ab98f46152afe327512cb3dbd41ac088 (MD5) / O crescente desenvolvimento tecnológico tem trazido a humanidade grandes benefícios, nas mais diversas áreas. De modo a dar continuidade a esse desenvolvimento, novas frentes de pesquisas vêm surgindo, em busca do domínio dessas tecnologias emergentes. Os limites físicos da computação clássica, baseada nos fenômenos eletromagnéticos, estão sendo alcançados e a computação quântica surge como uma possível solução para esses limites, bem como para apresentar um novo panorama para a computação, devido ao seu grande potencial. A fim de buscar um maior entendimento dos fenômenos que envolvem a computação quântica em uma transmissão de dados, em específico o fenômeno do emaranhamento, no presente trabalho apresenta-se um levantamento teórico sobre mecânica quântica, informação, computação e entropias quânticas, bem como computação paralela e MPI, propondo-se uma simulação com implementação em ambiente paralelo sobre o efeito da entropia de emaranhamento dos fótons em uma transmissão de dados. Além disso, realiza-se a comparação com a implementação em um ambiente de um único processador / The increasing technological development has brought great bene ts to humanity, in several areas. In order to continue this development, new research areas are emerging to reach new technologies. The physical limits of classical computing, based on electromagnetic phenomena are being achieved and quantum computing emerges as a possible solution to these limits, as well as to introduce a new scenario for computing, due to its great potential. In order to get a better understanding of phenomena involving quantum computing in a data transmission, in particular the phenomenon of entanglement, this work presents a theoretical quantum mechanics, information, computing and quantum entropies, as well as parallel computing and MPI, proposing a simulation with implementation in parallel environment on the e ect of the entropy of entanglement of photons in data transmission and comparison with implementation in a single processor environment
19

Quantum computation in open systems and anapplication in the biological model of Fröhlich / Computação quântica em sistemas abertos e uma aplicação ao modelo biológico de Fröhlich

Jean Faber Ferreira de Abreu 13 May 2004 (has links)
Um computador quântico universal é capaz de efetuar qualquer cálculo que qualquer máquina de Turing clássica possa efetuar. Porém, sistemas quânticos, em geral, são descritos como sistemas isolados. A interação do meio com as superposições de estados reduz a função de onda para um único estado bem definido. Contudo nenhum sistema na natureza é de fato isolado. Assim, ruídos, dissipações e erros são 'inevitáveis' para quaisquer procedimentos que manipulem informação com quaisquer recursos naturais (quânticos ou clássicos). O formalismo conhecido por Operação Quântica (OQ) é usado para descrever a maioria dos sistemas quânticos abertos num formato de tempo discreto. A partir desse formato pode-se evidenciar operações e ruídos característicos de processos computacionais. Para mostrar a eficiência de uma OQ aplicamos o formalismo no modelo quântico-biológico de Fröhlich. A partir dessa caracterização construímos uma ponte entre computação quântica e processos biofísicos. Essa ponte pode revelar propriedades desconhecidas ou ajudar na compreensão da dinâmica ainda difusa de sistemas biológicos; ou mesmo em novas técnicas na construção de computadores quânticos. / An universal quantum computer is capable to perform any calculation that any classical turing machine can perform. However, the orthodox quantum mechanics is described for isolated systems. Therefore, the description of quantum computers is made starting from linear and reversible transformations. The interaction with the environment tends to eliminate the quantum effects as the superposition of states. However, any natural system is not infact isolated. Hence, noises, dissipations and errors are inevitable for any procedures that manipulate information with any natural resources. The formalism known by Quantum Operation (QO) issued to describe most of the open quantum systems. Through this format we can display the characteristic noises of the computational processes. To show the effectiveness of the QOs we applied the formalism in the quantum biological model of Fröhlich. Starting from that characterization we build a bridge between Quantum Computation and biological processes. That bridge can reveal unknown properties or to help in understanding the microbiologic dynamics; or even new techniques in the construction of quantum computers.
20

Desacoplamento dinâmico de estados quânticos via campos contínuos de alta frequência / Dynamical decoupling of quantum states by high-frequency continuous fields

Felipe Fernandes Fanchini 19 December 2008 (has links)
Nesta tese de doutoramento nós tivemos como principal objetivo desenvolver novos métodos para proteção da informação e computação quântica. Começamos, de forma introdutória, ilustrando os conceitos básicos e fundamentais da teoria da informação e computação quântica, como os bits quânticos (qubits), o operador densidade, o emaranhamento e as operações lógicas quânticas. Na seqüência, apresentamos os formalismos utilizados para tratar sistemas abertos, ou seja, sujeitos a erros, além das principais técnicas existentes a fim de proteger a informação quântica, como os códigos de correção de erros, os subespaços livres de erros e o desacoplamento dinâmico. Finalmente, baseando-nos na técnica de desacoplamento dinâmico, introduzimos um esquema de proteção para operações lógicas quânticas e o emaranhamentos entre qubits utilizando campos de alta freqüência. Ilustramos em detalhes a proteção da operação lógica quântica de Hadamard e do emaranhamento entre dois qubits, além de apresentarmos as principais diferenças e vantagens de nosso método quando comparado às técnicas tradicionais de desacoplamento dinâmico. / The main objective of this thesis is the development of a new procedure for quantum information and computation protection. We begin by briefly illustrating the basic concepts of quantum information and computation theory, such as quantum bits (qubits), density matrix operator, entanglement, and quantum logical operations. Subsequently, we present the formalism utilized to treat quantum open systems, i.e., systems subjected to errors, and the main strategies to protect quantum information, such as quantum error correction codes, decoherence-free subspaces, and dynamical decoupling. Finally, based on the dynamical decoupling strategies, we introduce a procedure to protect quantum logical operations and entanglement utilizing high-frequency continuous fields. We illustrate, in details, the protection of a Hadamard quantum gate and of entanglement between two qubits, and present the differences and advantages of our procedure when compared with traditional techniques of dynamical decoupling.

Page generated in 0.0634 seconds