Spelling suggestions: "subject:"computación een lla nuwe"" "subject:"computación een lla nude""
21 |
Serverless Strategies and Tools in the Cloud Computing ContinuumRisco Gallardo, Sebastián 15 January 2024 (has links)
Tesis por compendio / [ES] En los últimos años, la popularidad de la computación en nube ha permitido a los usuarios acceder a recursos de cómputo, red y almacenamiento sin precedentes bajo un modelo de pago por uso. Esta popularidad ha propiciado la aparición de nuevos servicios para resolver determinados problemas informáticos a gran escala y simplificar el desarrollo y el despliegue de aplicaciones. Entre los servicios más destacados en los últimos años se encuentran las plataformas FaaS (Función como Servicio), cuyo principal atractivo es la facilidad de despliegue de pequeños fragmentos de código en determinados lenguajes de programación para realizar tareas específicas en respuesta a eventos. Estas funciones son ejecutadas en los servidores del proveedor Cloud sin que los usuarios se preocupen de su mantenimiento ni de la gestión de su elasticidad, manteniendo siempre un modelo de pago por uso de grano fino.
Las plataformas FaaS pertenecen al paradigma informático conocido como Serverless, cuyo propósito es abstraer la gestión de servidores por parte de los usuarios, permitiéndoles centrar sus esfuerzos únicamente en el desarrollo de aplicaciones. El problema del modelo FaaS es que está enfocado principalmente en microservicios y tiende a tener limitaciones en el tiempo de ejecución y en las capacidades de computación (por ejemplo, carece de soporte para hardware de aceleración como GPUs). Sin embargo, se ha demostrado que la capacidad de autoaprovisionamiento y el alto grado de paralelismo de estos servicios pueden ser muy adecuados para una mayor variedad de aplicaciones. Además, su inherente ejecución dirigida por eventos hace que las funciones sean perfectamente adecuadas para ser definidas como pasos en flujos de trabajo de procesamiento de archivos (por ejemplo, flujos de trabajo de computación científica).
Por otra parte, el auge de los dispositivos inteligentes e integrados (IoT), las innovaciones en las redes de comunicación y la necesidad de reducir la latencia en casos de uso complejos han dado lugar al concepto de Edge computing, o computación en el borde. El Edge computing consiste en el procesamiento en dispositivos cercanos a las fuentes de datos para mejorar los tiempos de respuesta. La combinación de este paradigma con la computación en nube, formando arquitecturas con dispositivos a distintos niveles en función de su proximidad a la fuente y su capacidad de cómputo, se ha acuñado como continuo de la computación en la nube (o continuo computacional).
Esta tesis doctoral pretende, por lo tanto, aplicar diferentes estrategias Serverless para permitir el despliegue de aplicaciones generalistas, empaquetadas en contenedores de software, a través de los diferentes niveles del continuo computacional. Para ello, se han desarrollado múltiples herramientas con el fin de: i) adaptar servicios FaaS de proveedores Cloud públicos; ii) integrar diferentes componentes software para definir una plataforma Serverless en infraestructuras privadas y en el borde; iii) aprovechar dispositivos de aceleración en plataformas Serverless; y iv) facilitar el despliegue de aplicaciones y flujos de trabajo a través de interfaces de usuario. Además, se han creado y adaptado varios casos de uso para evaluar los desarrollos conseguidos. / [CA] En els últims anys, la popularitat de la computació al núvol ha permès als usuaris accedir a recursos de còmput, xarxa i emmagatzematge sense precedents sota un model de pagament per ús. Aquesta popularitat ha propiciat l'aparició de nous serveis per resoldre determinats problemes informàtics a gran escala i simplificar el desenvolupament i desplegament d'aplicacions. Entre els serveis més destacats en els darrers anys hi ha les plataformes FaaS (Funcions com a Servei), el principal atractiu de les quals és la facilitat de desplegament de petits fragments de codi en determinats llenguatges de programació per realitzar tasques específiques en resposta a esdeveniments. Aquestes funcions són executades als servidors del proveïdor Cloud sense que els usuaris es preocupen del seu manteniment ni de la gestió de la seva elasticitat, mantenint sempre un model de pagament per ús de gra fi.
Les plataformes FaaS pertanyen al paradigma informàtic conegut com a Serverless, el propòsit del qual és abstraure la gestió de servidors per part dels usuaris, permetent centrar els seus esforços únicament en el desenvolupament d'aplicacions. El problema del model FaaS és que està enfocat principalment a microserveis i tendeix a tenir limitacions en el temps d'execució i en les capacitats de computació (per exemple, no té suport per a maquinari d'acceleració com GPU). Tot i això, s'ha demostrat que la capacitat d'autoaprovisionament i l'alt grau de paral·lelisme d'aquests serveis poden ser molt adequats per a més aplicacions. A més, la seva inherent execució dirigida per esdeveniments fa que les funcions siguen perfectament adequades per ser definides com a passos en fluxos de treball de processament d'arxius (per exemple, fluxos de treball de computació científica).
D'altra banda, l'auge dels dispositius intel·ligents i integrats (IoT), les innovacions a les xarxes de comunicació i la necessitat de reduir la latència en casos d'ús complexos han donat lloc al concepte d'Edge computing, o computació a la vora. L'Edge computing consisteix en el processament en dispositius propers a les fonts de dades per millorar els temps de resposta. La combinació d'aquest paradigma amb la computació en núvol, formant arquitectures amb dispositius a diferents nivells en funció de la proximitat a la font i la capacitat de còmput, s'ha encunyat com a continu de la computació al núvol (o continu computacional).
Aquesta tesi doctoral pretén, doncs, aplicar diferents estratègies Serverless per permetre el desplegament d'aplicacions generalistes, empaquetades en contenidors de programari, a través dels diferents nivells del continu computacional. Per això, s'han desenvolupat múltiples eines per tal de: i) adaptar serveis FaaS de proveïdors Cloud públics; ii) integrar diferents components de programari per definir una plataforma Serverless en infraestructures privades i a la vora; iii) aprofitar dispositius d'acceleració a plataformes Serverless; i iv) facilitar el desplegament d'aplicacions i fluxos de treball mitjançant interfícies d'usuari. A més, s'han creat i s'han adaptat diversos casos d'ús per avaluar els desenvolupaments aconseguits. / [EN] In recent years, the popularity of Cloud computing has allowed users to access unprecedented compute, network, and storage resources under a pay-per-use model. This popularity led to new services to solve specific large-scale computing challenges and simplify the development and deployment of applications. Among the most prominent services in recent years are FaaS (Function as a Service) platforms, whose primary appeal is the ease of deploying small pieces of code in certain programming languages to perform specific tasks on an event-driven basis. These functions are executed on the Cloud provider's servers without users worrying about their maintenance or elasticity management, always keeping a fine-grained pay-per-use model.
FaaS platforms belong to the computing paradigm known as Serverless, which aims to abstract the management of servers from the users, allowing them to focus their efforts solely on the development of applications. The problem with FaaS is that it focuses on microservices and tends to have limitations regarding the execution time and the computing capabilities (e.g. lack of support for acceleration hardware such as GPUs). However, it has been demonstrated that the self-provisioning capability and high degree of parallelism of these services can be well suited to broader applications. In addition, their inherent event-driven triggering makes functions perfectly suitable to be defined as steps in file processing workflows (e.g. scientific computing workflows).
Furthermore, the rise of smart and embedded devices (IoT), innovations in communication networks and the need to reduce latency in challenging use cases have led to the concept of Edge computing. Edge computing consists of conducting the processing on devices close to the data sources to improve response times. The coupling of this paradigm together with Cloud computing, involving architectures with devices at different levels depending on their proximity to the source and their compute capability, has been coined as Cloud Computing Continuum (or Computing Continuum).
Therefore, this PhD thesis aims to apply different Serverless strategies to enable the deployment of generalist applications, packaged in software containers, across the different tiers of the Cloud Computing Continuum. To this end, multiple tools have been developed in order to: i) adapt FaaS services from public Cloud providers; ii) integrate different software components to define a Serverless platform on on-premises and Edge infrastructures; iii) leverage acceleration devices on Serverless platforms; and iv) facilitate the deployment of applications and workflows through user interfaces. Additionally, several use cases have been created and adapted to assess the developments achieved. / Risco Gallardo, S. (2023). Serverless Strategies and Tools in the Cloud Computing Continuum [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202013 / Compendio
|
22 |
Advanced Elastic Platforms for High Throughput Computing on Container-based and Serverless InfrastructuresPérez González, Alfonso María 15 June 2020 (has links)
[ES] El principal objetivo de esta tesis es ofrecer a los usuarios científicos un modo de crear y ejecutar aplicaciones sin servidor (i.e. serverless) altamente paralelas, dirigidas por eventos y orientadas al procesado de datos, tanto en proveedores en la nube públicos (e.g. AWS) como privados (e.g. OpenNebula, OpenStack). Para llevar a cabo dicho objetivo, se han desarrollado e integrado diferentes herramientas que ofrecen una vía para desplegar aplicaciones de computación de altas prestaciones basadas en contenedores, que además pueden beneficiarse de la alta escalabilidad presente en los entornos serverless. Primero se ha creado una herramienta que permite el despliegue de cargas de trabajo genéricas en el proveedor público AWS. Esta herramienta posibilita que se puedan aprovechar las funcionalidades de AWS Lambda (e.g. alta escalabilidad, computación basada en eventos) para el despliegue y la integración de aplicaciones computacionalmente intensivas que usan el modelo de funciones como servicio (FaaS). En segundo lugar se ha desarrollado un modelo de programación de alto rendimiento para el procesado de datos y orientado a eventos que permite a los usuarios desplegar flujos de trabajo como un conjunto de funciones serverless, a la vez que ofrece una gestión transparente de los datos. En tercer lugar, para poder superar los problemas presentes en los proveedores públicos (e.g. tiempo de ejecución limitado), se ha creado una plataforma que facilita el uso del modelo FaaS en infraestructuras privadas. Esta plataforma también puede ser desplegada automáticamente en distintos proveedores públicos de la nube. Finalmente, para comprobar y validar las diferentes herramientas y plataformas desarrolladas, se han probado diferentes casos de uso con interés tanto para investigación como para la empresa. / [CA] El principal objectiu d'aquesta tesi és oferir als usuaris científics una manera de crear i executar aplicacions sense servidor (i.e. serverless) altament paral·leles, dirigides per esdeveniments i orientades al processament de dades, tant en proveïdors en núvol públics (e.g. AWS) com en privats (e.g. OpenNebula, OpenStack). Per a dur a terme aquest objectiu, s'ha desenvolupat e integrat diferents eines que ofereixen una via per desplegar aplicacions de computació d'altes prestacions basades en contenidors, alhora que es poden beneficiar de l'alta escalabilitat present en els entorns serverless. Primerament, s'ha creat una eina que possibilita el desplegament de càrregues de treball genèriques al proveïdor públic en núvol AWS. Aquesta eina permet aprofitar les funcionalitats de AWS Lambda (e.g. alta escalabilitat, computació basada en esdeveniments) per al desplegament i la integració d'aplicacions computacionalment intensives que fan ús del model de funcions com a servei (FaaS). En segon lloc, s'ha desenvolupat un model de programació d'alt rendiment per al processament de dades i orientat a esdeveniments, que permet als usuaris desplegar fluxos de treball com un conjunt de funcions serverless, alhora que ofereix una gestió transparent de les dades. En tercer lloc, per a superar els problemes presents als proveïdors públics (e.g. temps d'execució limitat) s'ha creat una plataforma que permet utilitzar el model FaaS en infraestructures privades. A més, aquesta plataforma pot ser desplegada automàticament en múltiples proveïdors públics en núvol. Finalment, per a comprobar i validar les diferents eines i plataformes dutes a terme, s'han provat diferents casos d'ús amb interès tant per a la recerca com per a l'empresa. / [EN] The main objective of this thesis is to allow scientific users to deploy and execute highly-parallel event-driven file-processing serverless applications both in public (e.g. AWS), and in private (e.g. OpenNebula, OpenStack) cloud infrastructures. To achieve this objective, different tools and platforms are developed and integrated to provide scientific users with a way for deploying High Throughput Computing applications based on containers that can benefit from the high elasticity capabilities of the serverless environments. First, an open-source tool to deploy generic serverless workloads in the AWS public Cloud provider has been created. This tool allows the scientific users to benefit from the features of AWS Lambda (e.g. high scalability, event-driven computing) for the deployment and integration of compute-intensive applications that use the Functions as a Service (FaaS) model. Second, an event-driven file-processing high-throughput programming model has been developed to allow the users deploy generic applications as workflows of functions in serverless architectures, offering transparent data management. Third, in order to overcome the drawbacks of public serverless services such as limited execution time or computing capabilities, an open-source platform to support FaaS for compute-intensive applications in on-premises Clouds was created. The platform can be automatically deployed on multi-Clouds in order to create highly-parallel event-driven file-processing serverless applications. Finally, in order to assess and validate all the developed tools and platforms, several use cases with business and scientific backgrounds have been tested. / Pérez González, AM. (2020). Advanced Elastic Platforms for High Throughput Computing on Container-based and Serverless Infrastructures [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/146365
|
23 |
Elastic, Interoperable and Container-based Cloud Infrastructures for High Performance ComputingLópez Huguet, Sergio 02 September 2021 (has links)
Tesis por compendio / [ES] Las aplicaciones científicas implican generalmente una carga computacional variable y no predecible a la que las instituciones deben hacer frente variando dinámicamente la asignación de recursos en función de las distintas necesidades computacionales. Las aplicaciones científicas pueden necesitar grandes requisitos. Por ejemplo, una gran cantidad de recursos computacionales para el procesado de numerosos trabajos independientes (High Throughput Computing o HTC) o recursos de alto rendimiento para la resolución de un problema individual (High Performance Computing o HPC). Los recursos computacionales necesarios en este tipo de aplicaciones suelen acarrear un coste muy alto que puede exceder la disponibilidad de los recursos de la institución o estos pueden no adaptarse correctamente a las necesidades de las aplicaciones científicas, especialmente en el caso de infraestructuras preparadas para la ejecución de aplicaciones de HPC. De hecho, es posible que las diferentes partes de una aplicación necesiten distintos tipos de recursos computacionales. Actualmente las plataformas de servicios en la nube se han convertido en una solución eficiente para satisfacer la demanda de las aplicaciones HTC, ya que proporcionan un abanico de recursos computacionales accesibles bajo demanda. Por esta razón, se ha producido un incremento en la cantidad de clouds híbridos, los cuales son una combinación de infraestructuras alojadas en servicios en la nube y en las propias instituciones (on-premise). Dado que las aplicaciones pueden ser procesadas en distintas infraestructuras, actualmente la portabilidad de las aplicaciones se ha convertido en un aspecto clave. Probablemente, las tecnologías de contenedores son la tecnología más popular para la entrega de aplicaciones gracias a que permiten reproducibilidad, trazabilidad, versionado, aislamiento y portabilidad.
El objetivo de la tesis es proporcionar una arquitectura y una serie de servicios para proveer infraestructuras elásticas híbridas de procesamiento que puedan dar respuesta a las diferentes cargas de trabajo. Para ello, se ha considerado la utilización de elasticidad vertical y horizontal desarrollando una prueba de concepto para proporcionar elasticidad vertical y se ha diseñado una arquitectura cloud elástica de procesamiento de Análisis de Datos. Después, se ha trabajo en una arquitectura cloud de recursos heterogéneos de procesamiento de imágenes médicas que proporciona distintas colas de procesamiento para trabajos con diferentes requisitos. Esta arquitectura ha estado enmarcada en una colaboración con la empresa QUIBIM. En la última parte de la tesis, se ha evolucionado esta arquitectura para diseñar e implementar un cloud elástico, multi-site y multi-tenant para el procesamiento de imágenes médicas en el marco del proyecto europeo PRIMAGE. Esta arquitectura utiliza un almacenamiento distribuido integrando servicios externos para la autenticación y la autorización basados en OpenID Connect (OIDC). Para ello, se ha desarrollado la herramienta kube-authorizer que, de manera automatizada y a partir de la información obtenida en el proceso de autenticación, proporciona el control de acceso a los recursos de la infraestructura de procesamiento mediante la creación de las políticas y roles. Finalmente, se ha desarrollado otra herramienta, hpc-connector, que permite la integración de infraestructuras de procesamiento HPC en infraestructuras cloud sin necesitar realizar cambios en la infraestructura HPC ni en la arquitectura cloud. Cabe destacar que, durante la realización de esta tesis, se han utilizado distintas tecnologías de gestión de trabajos y de contenedores de código abierto, se han desarrollado herramientas y componentes de código abierto y se han implementado recetas para la configuración automatizada de las distintas arquitecturas diseñadas desde la perspectiva DevOps. / [CA] Les aplicacions científiques impliquen generalment una càrrega computacional variable i no predictible a què les institucions han de fer front variant dinàmicament l'assignació de recursos en funció de les diferents necessitats computacionals. Les aplicacions científiques poden necessitar grans requisits. Per exemple, una gran quantitat de recursos computacionals per al processament de nombrosos treballs independents (High Throughput Computing o HTC) o recursos d'alt rendiment per a la resolució d'un problema individual (High Performance Computing o HPC). Els recursos computacionals necessaris en aquest tipus d'aplicacions solen comportar un cost molt elevat que pot excedir la disponibilitat dels recursos de la institució o aquests poden no adaptar-se correctament a les necessitats de les aplicacions científiques, especialment en el cas d'infraestructures preparades per a l'avaluació d'aplicacions d'HPC. De fet, és possible que les diferents parts d'una aplicació necessiten diferents tipus de recursos computacionals. Actualment les plataformes de servicis al núvol han esdevingut una solució eficient per satisfer la demanda de les aplicacions HTC, ja que proporcionen un ventall de recursos computacionals accessibles a demanda. Per aquest motiu, s'ha produït un increment de la quantitat de clouds híbrids, els quals són una combinació d'infraestructures allotjades a servicis en el núvol i a les mateixes institucions (on-premise). Donat que les aplicacions poden ser processades en diferents infraestructures, actualment la portabilitat de les aplicacions s'ha convertit en un aspecte clau. Probablement, les tecnologies de contenidors són la tecnologia més popular per a l'entrega d'aplicacions gràcies al fet que permeten reproductibilitat, traçabilitat, versionat, aïllament i portabilitat.
L'objectiu de la tesi és proporcionar una arquitectura i una sèrie de servicis per proveir infraestructures elàstiques híbrides de processament que puguen donar resposta a les diferents càrregues de treball. Per a això, s'ha considerat la utilització d'elasticitat vertical i horitzontal desenvolupant una prova de concepte per proporcionar elasticitat vertical i s'ha dissenyat una arquitectura cloud elàstica de processament d'Anàlisi de Dades. Després, s'ha treballat en una arquitectura cloud de recursos heterogenis de processament d'imatges mèdiques que proporciona distintes cues de processament per a treballs amb diferents requisits. Aquesta arquitectura ha estat emmarcada en una col·laboració amb l'empresa QUIBIM. En l'última part de la tesi, s'ha evolucionat aquesta arquitectura per dissenyar i implementar un cloud elàstic, multi-site i multi-tenant per al processament d'imatges mèdiques en el marc del projecte europeu PRIMAGE. Aquesta arquitectura utilitza un emmagatzemament integrant servicis externs per a l'autenticació i autorització basats en OpenID Connect (OIDC). Per a això, s'ha desenvolupat la ferramenta kube-authorizer que, de manera automatitzada i a partir de la informació obtinguda en el procés d'autenticació, proporciona el control d'accés als recursos de la infraestructura de processament mitjançant la creació de les polítiques i rols. Finalment, s'ha desenvolupat una altra ferramenta, hpc-connector, que permet la integració d'infraestructures de processament HPC en infraestructures cloud sense necessitat de realitzar canvis en la infraestructura HPC ni en l'arquitectura cloud. Es pot destacar que, durant la realització d'aquesta tesi, s'han utilitzat diferents tecnologies de gestió de treballs i de contenidors de codi obert, s'han desenvolupat ferramentes i components de codi obert, i s'han implementat receptes per a la configuració automatitzada de les distintes arquitectures dissenyades des de la perspectiva DevOps. / [EN] Scientific applications generally imply a variable and an unpredictable computational workload that institutions must address by dynamically adjusting the allocation of resources to their different computational needs. Scientific applications could require a high capacity, e.g. the concurrent usage of computational resources for processing several independent jobs (High Throughput Computing or HTC) or a high capability by means of using high-performance resources for solving complex problems (High Performance Computing or HPC). The computational resources required in this type of applications usually have a very high cost that may exceed the availability of the institution's resources or they are may not be successfully adapted to the scientific applications, especially in the case of infrastructures prepared for the execution of HPC applications. Indeed, it is possible that the different parts that compose an application require different type of computational resources. Nowadays, cloud service platforms have become an efficient solution to meet the need of HTC applications as they provide a wide range of computing resources accessible on demand. For this reason, the number of hybrid computational infrastructures has increased during the last years. The hybrid computation infrastructures are the combination of infrastructures hosted in cloud platforms and the computation resources hosted in the institutions, which are named on-premise infrastructures. As scientific applications can be processed on different infrastructures, the application delivery has become a key issue. Nowadays, containers are probably the most popular technology for application delivery as they ease reproducibility, traceability, versioning, isolation, and portability. The main objective of this thesis is to provide an architecture and a set of services to build up hybrid processing infrastructures that fit the need of different workloads. Hence, the thesis considered aspects such as elasticity and federation. The use of vertical and horizontal elasticity by developing a proof of concept to provide vertical elasticity on top of an elastic cloud architecture for data analytics. Afterwards, an elastic cloud architecture comprising heterogeneous computational resources has been implemented for medical imaging processing using multiple processing queues for jobs with different requirements. The development of this architecture has been framed in a collaboration with a company called QUIBIM. In the last part of the thesis, the previous work has been evolved to design and implement an elastic, multi-site and multi-tenant cloud architecture for medical image processing has been designed in the framework of a European project PRIMAGE. This architecture uses a storage integrating external services for the authentication and authorization based on OpenID Connect (OIDC). The tool kube-authorizer has been developed to provide access control to the resources of the processing infrastructure in an automatic way from the information obtained in the authentication process, by creating policies and roles. Finally, another tool, hpc-connector, has been developed to enable the integration of HPC processing infrastructures into cloud infrastructures without requiring modifications in both infrastructures, cloud and HPC. It should be noted that, during the realization of this thesis, different contributions to open source container and job management technologies have been performed by developing open source tools and components and configuration recipes for the automated configuration of the different architectures designed from the DevOps perspective. The results obtained support the feasibility of the vertical elasticity combined with the horizontal elasticity to implement QoS policies based on a deadline, as well as the feasibility of the federated authentication model to combine public and on-premise clouds. / López Huguet, S. (2021). Elastic, Interoperable and Container-based Cloud Infrastructures for High Performance Computing [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172327 / Compendio
|
24 |
Serverless Computing Strategies on Cloud PlatformsNaranjo Delgado, Diana María 08 February 2021 (has links)
[ES] Con el desarrollo de la Computación en la Nube, la entrega de recursos virtualizados a través de Internet ha crecido enormemente en los últimos años. Las Funciones como servicio (FaaS), uno de los modelos de servicio más nuevos dentro de la Computación en la Nube, permite el desarrollo e implementación de aplicaciones basadas en eventos que cubren servicios administrados en Nubes públicas y locales. Los proveedores públicos de Computación en la Nube adoptan el modelo FaaS dentro de su catálogo para proporcionar computación basada en eventos altamente escalable para las aplicaciones.
Por un lado, los desarrolladores especializados en esta tecnología se centran en crear marcos de código abierto serverless para evitar el bloqueo con los proveedores de la Nube pública. A pesar del desarrollo logrado por la informática serverless, actualmente hay campos relacionados con el procesamiento de datos y la optimización del rendimiento en la ejecución en los que no se ha explorado todo el potencial.
En esta tesis doctoral se definen tres estrategias de computación serverless que permiten evidenciar los beneficios de esta tecnología para el procesamiento de datos. Las estrategias implementadas permiten el análisis de datos con la integración de dispositivos de aceleración para la ejecución eficiente de aplicaciones científicas en plataformas cloud públicas y locales.
En primer lugar, se desarrolló la plataforma CloudTrail-Tracker. CloudTrail-Tracker es una plataforma serverless de código abierto basada en eventos para el procesamiento de datos que puede escalar automáticamente hacia arriba y hacia abajo, con la capacidad de escalar a cero para minimizar los costos operativos.
Seguidamente, se plantea la integración de GPUs en una plataforma serverless local impulsada por eventos para el procesamiento de datos escalables. La plataforma admite la ejecución de aplicaciones como funciones severless en respuesta a la carga de un archivo en un sistema de almacenamiento de ficheros, lo que permite la ejecución en paralelo de las aplicaciones según los recursos disponibles. Este procesamiento es administrado por un cluster Kubernetes elástico que crece y decrece automáticamente según las necesidades de procesamiento. Ciertos enfoques basados en tecnologías de virtualización de GPU como rCUDA y NVIDIA-Docker se evalúan para acelerar el tiempo de ejecución de las funciones.
Finalmente, se implementa otra solución basada en el modelo serverless para ejecutar la fase de inferencia de modelos de aprendizaje automático previamente entrenados, en la plataforma de Amazon Web Services y en una plataforma privada con el framework OSCAR. El sistema crece elásticamente de acuerdo con la demanda y presenta una escalado a cero para minimizar los costes. Por otra parte, el front-end proporciona al usuario una experiencia simplificada en la obtención de la predicción de modelos de aprendizaje automático.
Para demostrar las funcionalidades y ventajas de las soluciones propuestas durante esta tesis se recogen varios casos de estudio que abarcan diferentes campos del conocimiento como la analítica de aprendizaje y la Inteligencia Artificial. Esto demuestra que la gama de aplicaciones donde la computación serverless puede aportar grandes beneficios es muy amplia. Los resultados obtenidos avalan el uso del modelo serverless en la simplificación del diseño de arquitecturas para el uso intensivo de datos en aplicaciones complejas. / [CA] Amb el desenvolupament de la Computació en el Núvol, el lliurament de recursos virtualitzats a través d'Internet ha crescut granment en els últims anys. Les Funcions com a Servei (FaaS), un dels models de servei més nous dins de la Computació en el Núvol, permet el desenvolupament i implementació d'aplicacions basades en esdeveniments que cobreixen serveis administrats en Núvols públics i locals. Els proveïdors de computació en el Núvol públic adopten el model FaaS dins del seu catàleg per a proporcionar a les aplicacions computació altament escalable basada en esdeveniments.
D'una banda, els desenvolupadors especialitzats en aquesta tecnologia se centren en crear marcs de codi obert serverless per a evitar el bloqueig amb els proveïdors del Núvol públic. Malgrat el desenvolupament alcançat per la informàtica serverless, actualment hi ha camps relacionats amb el processament de dades i l'optimització del rendiment d'execució en els quals no s'ha explorat tot el potencial.
En aquesta tesi doctoral es defineixen tres estratègies informàtiques serverless que permeten demostrar els beneficis d'aquesta tecnologia per al processament de dades. Les estratègies implementades permeten l'anàlisi de dades amb a integració de dispositius accelerats per a l'execució eficient d'aplicacion scientífiques en plataformes de Núvol públiques i locals.
En primer lloc, es va desenvolupar la plataforma CloudTrail-Tracker. CloudTrail-Tracker és una plataforma de codi obert basada en esdeveniments per al processament de dades serverless que pot escalar automáticament cap amunt i cap avall, amb la capacitat d'escalar a zero per a minimitzar els costos operatius.
A continuació es planteja la integració de GPUs en una plataforma serverless local impulsada per esdeveniments per al processament de dades escalables. La plataforma admet l'execució d'aplicacions com funcions severless en resposta a la càrrega d'un arxiu en un sistema d'emmagatzemaments de fitxers, la qual cosa permet l'execució en paral·lel de les aplicacions segon sels recursos disponibles. Este processament és administrat per un cluster Kubernetes elàstic que creix i decreix automàticament segons les necessitats de processament. Certs enfocaments basats en tecnologies de virtualització de GPU com rCUDA i NVIDIA-Docker s'avaluen per a accelerar el temps d'execució de les funcions.
Finalment s'implementa una altra solució basada en el model serverless per a executar la fase d'inferència de models d'aprenentatge automàtic prèviament entrenats en la plataforma de Amazon Web Services i en una plataforma privada amb el framework OSCAR. El sistema creix elàsticament d'acord amb la demanda i presenta una escalada a zero per a minimitzar els costos. D'altra banda el front-end proporciona a l'usuari una experiència simplificada en l'obtenció de la predicció de models d'aprenentatge automàtic.
Per a demostrar les funcionalitats i avantatges de les solucions proposades durant esta tesi s'arrepleguen diversos casos d'estudi que comprenen diferents camps del coneixement com l'analítica d'aprenentatge i la Intel·ligència Artificial. Això demostra que la gamma d'aplicacions on la computació serverless pot aportar grans beneficis és molt àmplia. Els resultats obtinguts avalen l'ús del model serverless en la simplificació del disseny d'arquitectures per a l'ús intensiu de dades en aplicacions complexes. / [EN] With the development of Cloud Computing, the delivery of virtualized resources over the Internet has greatly grown in recent years. Functions as a Service (FaaS), one of the newest service models within Cloud Computing, allows the development and implementation of event-based applications that cover managed services in public and on-premises Clouds. Public Cloud Computing providers adopt the FaaS model within their catalog to provide event-driven highly-scalable computing for applications.
On the one hand, developers specialized in this technology focus on creating open-source serverless frameworks to avoid the lock-in with public Cloud providers. Despite the development achieved by serverless computing, there are currently fields related to data processing and execution performance optimization where the full potential has not been explored.
In this doctoral thesis three serverless computing strategies are defined that allow to demonstrate the benefits of this technology for data processing. The implemented strategies allow the analysis of data with the integration of accelerated devices for the efficient execution of scientific applications on public and on-premises Cloud platforms.
Firstly, the CloudTrail-Tracker platform was developed to extract and process learning analytics in the Cloud. CloudTrail-Tracker is an event-driven open-source platform for serverless data processing that can automatically scale up and down, featuring the ability to scale to zero for minimizing the operational costs.
Next, the integration of GPUs in an event-driven on-premises serverless platform for scalable data processing is discussed. The platform supports the execution of applications as serverless functions in response to the loading of a file in a file storage system, which allows the parallel execution of applications according to available resources. This processing is managed by an elastic Kubernetes cluster that automatically grows and shrinks according to the processing needs. Certain approaches based on GPU virtualization technologies such as rCUDA and NVIDIA-Docker are evaluated to speed up the execution time of the functions.
Finally, another solution based on the serverless model is implemented to run the inference phase of previously trained machine learning models on theAmazon Web Services platform and in a private platform with the OSCAR framework. The system grows elastically according to demand and is scaled to zero to minimize costs. On the other hand, the front-end provides the user with a simplified experience in obtaining the prediction of machine learning models.
To demonstrate the functionalities and advantages of the solutions proposed during this thesis, several case studies are collected covering different fields of knowledge such as learning analytics and Artificial Intelligence. This shows the wide range of applications where serverless computing can bring great benefits. The results obtained endorse the use of the serverless model in simplifying the design of architectures for the intensive data processing in complex applications. / Naranjo Delgado, DM. (2021). Serverless Computing Strategies on Cloud Platforms [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/160916
|
25 |
Optimization of Fluid Bed Dryer Energy Consumption for Pharmaceutical Drug Processes through Machine Learning and Cloud Computing TechnologiesBarriga Rodríguez, Roberto 01 September 2023 (has links)
[ES] Los altos costes energéticos, las constantes medidas regulatorias aplicadas por las administraciones para mantener bajos los costes sanitarios, así como los cambios en la normativa sanitaria que se han introducido en los últimos años, han tenido un impacto significativo en la industria farmacéutica y sanitaria. El paradigma Industria 4.0 engloba cambios en el modelo productivo tradicional de la industria farmacéutica con la inclusión de tecnologías que van más allá de la automatización tradicional. El objetivo principal es lograr medicamentos más rentables mediante la incorporación óptima de tecnologías como la analítica avanzada. El proceso de fabricación de las industrias farmacéuticas tiene diferentes etapas (mezclado, secado, compactado, recubrimiento, envasado, etc.) donde una de las etapas más costosas energéticamente es el proceso de secado. El objetivo durante este proceso es extraer el contenido de líquidos como el agua mediante la inyección de aire caliente y seco en el sistema. Este tiempo de secado normalmente está predeterminado y depende del volumen y el tipo de unidades de producto farmacéutico que se deben deshidratar. Por otro lado, la fase de precalentamiento puede variar dependiendo de varios parámetros como la experiencia del operador. Por lo tanto, es posible asumir que una optimización de este proceso a través de analítica avanzada es posible y puede tener un efecto significativo en la reducción de costes en todo el proceso de fabricación. Debido al alto coste de la maquinaria involucrada en el proceso de producción de medicamentos, es una práctica común en la industria farmacéutica tratar de maximizar la vida útil de estas máquinas que no están equipados con los últimos sensores. Así pues, es posible implementar un modelo de aprendizaje automático que utilice plataformas de analítica avanzada, como la computación en la nube, para analizar los posibles ahorros en el consumo de energía. Esta tesis está enfocada en mejorar el consumo de energía en el proceso de precalentamiento de un secador de lecho fluido, mediante la definición e implementación de una plataforma de computación en la nube IIOT (Industrial Internet of Things)-Cloud, para alojar y ejecutar un algoritmo de aprendizaje automático basado en el modelo Catboost, para predecir cuándo es el momento óptimo para detener el proceso y reducir su duración y, en consecuencia, su consumo energético. Los resultados experimentales muestran que es posible reducir el proceso de precalentamiento en un 45% de su duración en tiempo y, en consecuencia, reducir el consumo de energía hasta 2.8 MWh por año. / [CAT] Els elevats costos energètics, les constants mesures reguladores aplicades per les administracions per mantenir uns costos assistencials baixos, així com els canvis en la normativa sanitària que s'han introduït en els darrers anys, han tingut un impacte important en el sector farmacèutic i sanitari. El paradigma de la indústria 4.0 engloba els canvis en el model de producció tradicional de la indústria farmacèutica amb la inclusió de tecnologies que van més enllà de l'automatització tradicional. L'objectiu principal és aconseguir fàrmacs més rendibles mitjançant la incorporació òptima de tecnologies com l'analítica avançada. El procés de fabricació de les indústries farmacèutiques té diferents etapes (mescla, assecat, compactació, recobriment, envasat, etc.) on una de les etapes més costoses energèticament és el procés d'assecat. L'objectiu d'aquest procés és extreure el contingut de líquids com l'aigua injectant aire calent i sec al sistema. Aquest temps de procediment d'assecat normalment està predeterminat i depèn del volum i del tipus d'unitats de producte farmacèutic que cal deshidratar. D'altra banda, la fase de preescalfament pot variar en funció de diversos paràmetres com l'experiència de l'operador. Per tant, podem assumir que una optimització d'aquest procés mitjançant analítiques avançades és possible i pot tenir un efecte significatiu de reducció de costos en tot el procés de fabricació. A causa de l'elevat cost de la maquinària implicada en el procés de producció de fàrmacs, és una pràctica habitual a la indústria farmacèutica intentar maximitzar la vida útil d'aquestes màquines que no estan equipats amb els darrers sensors. Així, es pot implementar un model d'aprenentatge automàtic que utilitza plataformes de analítiques avançades com la computació en núvol, per analitzar l'estalvi potencial del consum d'energia. Aquesta tesis està enfocada a millorar el consum d'energia en el procés de preescalfament d'un assecador de llit fluid, mitjançant la definició i implementació d'una plataforma IIOT (Industrial Internet of Things)-Cloud computing, per allotjar i executar un algorisme d'aprenentatge automàtic basat en el modelatge Catboost, per predir quan és el moment òptim per aturar el procés i reduir-ne la durada, i en conseqüència el seu consum energètic. Els resultats de l'experiment mostren que és possible reduir el procés de preescalfament en un 45% de la seva durada en temps i, en conseqüència, reduir el consum d'energia fins a 2.8 MWh anuals. / [EN] High energy costs, the constant regulatory measures applied by administrations to maintain low healthcare costs, and the changes in healthcare regulations introduced in recent years have all significantly impacted the pharmaceutical and healthcare industry. The industry 4.0 paradigm encompasses changes in the traditional production model of the pharmaceutical industry with the inclusion of technologies beyond traditional automation. The primary goal is to achieve more cost-efficient drugs through the optimal incorporation of technologies such as advanced analytics. The manufacturing process of the pharmaceutical industry has different stages (mixing, drying, compacting, coating, packaging, etc..), and one of the most energy-expensive stages is the drying process. This process aims to extract the liquid content, such as water, by injecting warm and dry air into the system. This drying procedure time usually is predetermined and depends on the volume and the kind of units of a pharmaceutical product that must be dehydrated. On the other hand, the preheating phase can vary depending on various parameters, such as the operator's experience. It is, therefore, safe to assume that optimization of this process through advanced analytics is possible and can have a significant cost-reducing effect on the whole manufacturing process. Due to the high cost of the machinery involved in the drug production process, it is common practice in the pharmaceutical industry to try to maximize the useful life of these machines, which are not equipped with the latest sensors. Thus, a machine learning model using advanced analytics platforms, such as cloud computing, can be implemented to analyze potential energy consumption savings. This thesis is focused on improving the energy consumption in the preheating process of a fluid bed dryer by defining and implementing an IIOT (Industrial Internet of Things) Cloud computing platform. This architecture will host and run a machine learning algorithm based on Catboost modeling to predict when the optimum time is reached to stop the process, reduce its duration, and consequently its energy consumption. Experimental results show that it is possible to reduce the preheating process by 45% of its time duration, consequently reducing energy consumption by up to 2.8 MWh per year. / Barriga Rodríguez, R. (2023). Optimization of Fluid Bed Dryer Energy Consumption for Pharmaceutical Drug Processes through Machine Learning and Cloud Computing Technologies [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/195847
|
26 |
Interference Analysis and Resource Management in Server Processors: from HPC to Cloud ComputingPons Escat, Lucía 01 September 2023 (has links)
[ES] Una de las principales preocupaciones de los centros de datos actuales es maximizar la utilización de los servidores. En cada servidor se ejecutan simultáneamente varias aplicaciones para aumentar la eficiencia de los recursos. Sin embargo, las prestaciones dependen en gran medida de la proporción de recursos que recibe cada aplicación. El mayor número de núcleos (y de aplicaciones ejecutándose) con cada nueva generación de procesadores hace que crezca la preocupación por la interferencia en los recursos compartidos. Esta tesis se centra en mitigar la interferencia cuando diferentes aplicaciones se consolidan en un mismo procesador desde dos perspectivas: computación de alto rendimiento (HPC) y computación en la nube.
En el contexto de HPC, esta tesis propone políticas de gestión para dos de los recursos más críticos: la caché de último nivel (LLC) y los núcleos del procesador. La LLC desempeña un papel clave en las prestaciones de los procesadores actuales al reducir considerablemente el número de accesos de alta latencia a memoria principal. Se proponen estrategias de particionado de la LLC tanto para cachés inclusivas como no inclusivas, ambos diseños presentes en los procesadores para servidores actuales. Para los esquemas, se detectan nuevos comportamientos problemáticos y se asigna un mayor espacio de caché a las aplicaciones que hacen mejor uso de este. En cuanto a los núcleos del procesador, muchas aplicaciones paralelas (como aplicaciones de grafos) no escalan bien con un mayor número de núcleos. Además, el planificador de Linux aplica una estrategia de tiempo compartido que no ofrece buenas prestaciones cuando se ejecutan aplicaciones de grafo. Para maximizar la utilización del sistema, esta tesis propone ejecutar múltiples aplicaciones de grafo en el mismo procesador, asignando a cada una el número óptimo de núcleos (y adaptando el número de hilos creados) dinámicamente.
En cuanto a la computación en la nube, esta tesis aborda tres grandes retos: la compleja infraestructura de estos sistemas, las características de sus aplicaciones y el impacto de la interferencia entre máquinas virtuales (MV). Primero, esta tesis presenta la plataforma experimental desarrollada con los principales componentes de un sistema en la nube. Luego, se presenta un amplio estudio de caracterización sobre un conjunto de aplicaciones de latencia crítica representativas con el fin de identificar los puntos que los proveedores de servicios en la nube deben tener en cuenta para mejorar el rendimiento y la utilización de los recursos. Por último, se realiza una propuesta que permite detectar y estimar dinámicamente la interferencia entre MV. El enfoque usa métricas que pueden monitorizarse fácilmente en la nube pública, ya que las MV deben tratarse como "cajas negras". Toda la investigación descrita se lleva a cabo respetando las restricciones y cumpliendo los requisitos para ser aplicable en entornos de producción de nube pública.
En resumen, esta tesis aborda la contención en los principales recursos compartidos del sistema en el contexto de la consolidación de servidores. Los resultados experimentales muestran importantes ganancias sobre Linux. En los procesadores con LLC inclusiva, el tiempo de ejecución (TT) se reduce en más de un 40%, mientras que se mejora el IPC más de un 3%. Con una LLC no inclusiva, la equidad y el TT mejoran en un 44% y un 24%, respectivamente, al mismo tiempo que se mejora el rendimiento hasta un 3,5%. Al distribuir los núcleos del procesador de forma eficiente, se alcanza una equidad casi perfecta (94%), y el TT se reduce hasta un 80%. En entornos de computación en la nube, la degradación del rendimiento puede estimarse con un error de un 5% en la predicción global. Todas las propuestas presentadas han sido diseñadas para ser aplicadas en procesadores comerciales sin requerir ninguna información previa, tomando las decisiones dinámicamente con datos recogidos de los contadores de prestaciones. / [CAT] Una de les principals preocupacions dels centres de dades actuals és maximitzar la utilització dels servidors. A cada servidor s'executen simultàniament diverses aplicacions per augmentar l'eficiència dels recursos. Tot i això, el rendiment depèn en gran mesura de la proporció de recursos que rep cada aplicació. El nombre creixent de nuclis (i aplicacions executant-se) amb cada nova generació de processadors fa que creixca la preocupació per l'efecte causat per les interferències en els recursos compartits. Aquesta tesi se centra a mitigar la interferència en els recursos compartits quan diferents aplicacions es consoliden en un mateix processador des de dues perspectives: computació d'alt rendiment (HPC) i computació al núvol.
En el context d'HPC, aquesta tesi proposa polítiques de gestió per a dos dels recursos més crítics: la memòria cau d'últim nivell (LLC) i els nuclis del processador. La LLC exerceix un paper clau a les prestacions del sistema en els processadors actuals reduint considerablement el nombre d'accessos d'alta latència a la memòria principal. Es proposen estratègies de particionament de la LLC tant per a caus inclusives com no inclusives, ambdós dissenys presents en els processadors actuals. Per als dos esquemes, se detecten nous comportaments problemàtics i s'assigna un major espai de memòria cau a les aplicacions que en fan un millor ús. Pel que fa als nuclis del processador, moltes aplicacions paral·leles (com les aplicacions de graf) no escalen bé a mesura que s'incrementa el nombre de nuclis. A més, el planificador de Linux aplica una estratègia de temps compartit que no ofereix bones prestacions quan s'executen aplicacions de graf. Per maximitzar la utilització del sistema, aquesta tesi proposa executar múltiples aplicacions de grafs al mateix processador, assignant a cadascuna el nombre òptim de nuclis (i adaptant el nombre de fils creats) dinàmicament.
Pel que fa a la computació al núvol, aquesta tesi aborda tres grans reptes: la complexa infraestructura d'aquests sistemes, les característiques de les seues aplicacions i l'impacte de la interferència entre màquines virtuals (MV). En primer lloc, aquesta tesi presenta la plataforma experimental desenvolupada amb els principals components d'un sistema al núvol. Després, es presenta un ampli estudi de caracterització sobre un conjunt d'aplicacions de latència crítica representatives per identificar els punts que els proveïdors de serveis al núvol han de tenir en compte per millorar el rendiment i la utilització dels recursos. Finalment, es fa una proposta que de manera dinàmica permet detectar i estimar la interferència entre MV. L'enfocament es basa en mètriques que es poden monitoritzar fàcilment al núvol públic, ja que les MV han de tractar-se com a "caixes negres". Tota la investigació descrita es duu a terme respectant les restriccions i complint els requisits per ser aplicable en entorns de producció al núvol públic.
En resum, aquesta tesi aborda la contenció en els principals recursos compartits del sistema en el context de la consolidació de servidors. Els resultats experimentals mostren que s'obtenen importants guanys sobre Linux. En els processadors amb una LLC inclusiva, el temps d'execució (TT) es redueix en més d'un 40%, mentres que es millora l'IPC en més d'un 3%. En una LLC no inclusiva, l'equitat i el TT es milloren en un 44% i un 24%, respectivament, al mateix temps que s'obté una millora del rendiment de fins a un 3,5%. Distribuint els nuclis del processador de manera eficient es pot obtindre una equitat quasi perfecta (94%), i el TT pot reduir-se fins a un 80%. En entorns de computació al núvol, la degradació del rendiment pot estimar-se amb un error de predicció global d'un 5%. Totes les propostes presentades en aquesta tesi han sigut dissenyades per a ser aplicades en processadors de servidors comercials sense requerir cap informació prèvia, prenent decisions dinàmicament amb dades recollides dels comptadors de prestacions. / [EN] One of the main concerns of today's data centers is to maximize server utilization. In each server processor, multiple applications are executed concurrently, increasing resource efficiency. However, performance and fairness highly depend on the share of resources that each application receives, leading to performance unpredictability. The rising number of cores (and running applications) with every new generation of processors is leading to a growing concern for interference at the shared resources. This thesis focuses on addressing resource interference when different applications are consolidated on the same server processor from two main perspectives: high-performance computing (HPC) and cloud computing.
In the context of HPC, resource management approaches are proposed to reduce inter-application interference at two major critical resources: the last level cache (LLC) and the processor cores. The LLC plays a key role in the system performance of current multi-cores by reducing the number of long-latency main memory accesses. LLC partitioning approaches are proposed for both inclusive and non-inclusive LLCs, as both designs are present in current server processors. In both cases, newly problematic LLC behaviors are identified and efficiently detected, granting a larger cache share to those applications that use best the LLC space. As for processor cores, many parallel applications, like graph applications, do not scale well with an increasing number of cores. Moreover, the default Linux time-sharing scheduler performs poorly when running graph applications, which process vast amounts of data. To maximize system utilization, this thesis proposes to co-locate multiple graph applications on the same server processor by assigning the optimal number of cores to each one, dynamically adapting the number of threads spawned by the running applications.
When studying the impact of system-shared resources on cloud computing, this thesis addresses three major challenges: the complex infrastructure of cloud systems, the nature of cloud applications, and the impact of inter-VM interference. Firstly, this thesis presents the experimental platform developed to perform representative cloud studies with the main cloud system components (hardware and software). Secondly, an extensive characterization study is presented on a set of representative latency-critical workloads which must meet strict quality of service (QoS) requirements. The aim of the studies is to outline issues cloud providers should consider to improve performance and resource utilization. Finally, we propose an online approach that detects and accurately estimates inter-VM interference when co-locating multiple latency-critical VMs. The approach relies on metrics that can be easily monitored in the public cloud as VMs are handled as ``black boxes''. The research described above is carried out following the restrictions and requirements to be applicable to public cloud production systems.
In summary, this thesis addresses contention in the main system shared resources in the context of server consolidation, both in HPC and cloud computing. Experimental results show that important gains are obtained over the Linux OS scheduler by reducing interference. In inclusive LLCs, turnaround time (TT) is reduced by over 40% while improving IPC by more than 3%. In non-inclusive LLCs, fairness and TT are improved by 44% and 24%, respectively, while improving performance by up to 3.5%. By distributing core resources efficiently, almost perfect fairness can be obtained (94%), and TT can be reduced by up to 80%. In cloud computing, performance degradation due to resource contention can be estimated with an overall prediction error of 5%. All the approaches proposed in this thesis have been designed to be applied in commercial server processors without requiring any prior information, making decisions dynamically with data collected from hardware performance counters. / Pons Escat, L. (2023). Interference Analysis and Resource Management in Server Processors: from HPC to Cloud Computing [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/195840
|
Page generated in 0.1077 seconds