• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Investigation of Shipping Noise Risk in the Red Sea

Larayedh, Rihab F. 05 1900 (has links)
Underwater noise pollution is a significant environmental issue that can have detrimental effects on marine ecosystems. One of the main sources of underwater noise pollution is ship traffic, which has been shown to negatively impact marine animals by masking communication signals, altering their behaviors, and even causing hearing loss. In the Red Sea, ships are the main contributor to underwater noise pollution, particularly in areas with high shipping traffic. This thesis aims to understand the spatial and temporal distribution of underwater ship noise in the Red Sea using an acoustic propagation model, namely the Range-dependent Acoustic Model (RAM). RAM takes into account anthropogenic and environmental inputs including water temperature, salinity, and bathymetry to predict sound propagation in the Red Sea. By running RAM with inputs of ship traffic data, maps of underwater ship noise in the Red Sea were generated. These maps are important tools for policymakers and marine resource managers to identify areas of high noise pollution, target mitigation efforts accordingly, and guide future research on the effects of underwater noise pollution on marine life in the Red Sea.
2

Finite difference and finite volume methods for wave-based modelling of room acoustics

Hamilton, Brian January 2016 (has links)
Wave-based models of sound propagation can be used to predict and synthesize sounds as they would be heard naturally in room acoustic environments. The numerical simulation of such models with traditional time-stepping grid-based methods can be an expensive process, due to the sheer size of listening environments (e.g., auditoriums and concert halls) and due to the temporal resolution required by audio rates that resolve frequencies up to the limit of human hearing. Finite difference methods comprise a simple starting point for such simulations, but they are known to suffer from approximation errors that may necessitate expensive grid refinements in order to achieve sufficient levels of accuracy. As such, a significant amount of research has gone into designing finite difference methods that are highly accurate while remaining computationally efficient. The problem of designing and using accurate finite difference schemes is compounded by the fact that room acoustics models require complex boundary conditions to model frequency-dependent wall impedances over non-trivial geometries. The implementation of such boundary conditions in a numerically stable manner has been a challenge for some time. Stable boundary conditions for finite difference room acoustics simulations have been formulated in the past, but generally they have only been useful in modelling trivial geometries (e.g., idealised shoebox halls). Finite volume methods have recently been shown to be a viable solution to the problem of complex boundary conditions over non-trivial geometries, and they also allow for the use of energy methods for numerical stability analyses. Finite volume methods lend themselves naturally to fully unstructured grids and they can simplify to the types of grids typically used in finite difference methods. This allows for room acoustics simulation models that balance the simplicity of finite difference methods for wave propagation in air with the detail of finite volume methods for the modelling of complex boundaries. This thesis is an exploration of these two distinct, yet related, approaches to wave-based room acoustic simulations. The overarching theme in this investigation is the balance between accuracy, computational efficiency, and numerical stability. Higher-order and optimised schemes in two and three spatial dimensions are derived and compared, towards the goal of finding accurate and efficient finite difference schemes. Numerical stability is analysed using frequency-domain analyses, as well as energy techniques whenever possible, allowing for stable and frequency-dependent boundary conditions appropriate for room acoustics modelling. Along the way, the use of non-Cartesian grids is investigated, geometric relationships between certain finite difference and finite volume schemes are explored, and some problems associated to staircasing effects at boundaries are considered. Also, models of sound absorption in air are incorporated into these numerical schemes, using physical parameters that are appropriate for room acoustic scenarios.
3

Fast algorithms for frequency domain wave propagation

Tsuji, Paul Hikaru 22 February 2013 (has links)
High-frequency wave phenomena is observed in many physical settings, most notably in acoustics, electromagnetics, and elasticity. In all of these fields, numerical simulation and modeling of the forward propagation problem is important to the design and analysis of many systems; a few examples which rely on these computations are the development of metamaterial technologies and geophysical prospecting for natural resources. There are two modes of modeling the forward problem: the frequency domain and the time domain. As the title states, this work is concerned with the former regime. The difficulties of solving the high-frequency wave propagation problem accurately lies in the large number of degrees of freedom required. Conventional wisdom in the computational electromagnetics commmunity suggests that about 10 degrees of freedom per wavelength be used in each coordinate direction to resolve each oscillation. If K is the width of the domain in wavelengths, the number of unknowns N grows at least by O(K^2) for surface discretizations and O(K^3) for volume discretizations in 3D. The memory requirements and asymptotic complexity estimates of direct algorithms such as the multifrontal method are too costly for such problems. Thus, iterative solvers must be used. In this dissertation, I will present fast algorithms which, in conjunction with GMRES, allow the solution of the forward problem in O(N) or O(N log N) time. / text

Page generated in 0.1253 seconds