• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Problèmes d'interface en présence de métamatériaux : modélisation, analyse et simulations / Interface problems with metamaterials : modelling, analysis and simulations

Vinoles, Valentin 08 September 2016 (has links)
Nous nous intéressons à des problèmes de transmission entre diélectriques et métamatériaux, milieux présentant des propriétés électromagnétiques inhabituelles comme des caractéristiques effectives négatives à certaines fréquences. Par exemple, ces milieux peuvent être construits comme des assemblages périodiques de microstructures résonantes et dans ce cas la théorie de l'homogénéisation permet de justifier mathématiquement ces propriétés effectives. En régime harmonique et dans des géométries à variables séparables, des calculs analytiques peuvent être menés. Ils révèlent dans des cas dits critiques des difficultés mathématiques: les solutions n'ont pas la régularité standard, voire le problème peut être mal posé.La première partie étudie ces problèmes de transmission en régime temporel pour lequel les métamatériaux sont modélisés par des modèles dispersifs (modèle de Drude ou de Lorentz). Les difficultés résident dans le choix d'un schéma de discrétisation mais surtout dans la construction de conditions absorbantes. La méthode retenue ici est celle des Perfectly Matched Layers (PMLs). Comme les PMLs classiques sont instables pour ces modèles du fait de la présence d'ondes inverses, nous proposons une nouvelle classe de PMLs pour lesquelles nous menons une analyse de stabilité. Cette dernière permet de construire des PMLs stables. Elles sont ensuite utilisées pour simuler le comportement en temps long d'un problème de transmission; nous illustrons alors le fait que le principe d'amplitude limite peut être mis en défaut en raison de résonances d'interface.La deuxième partie vise à pallier ces phénomènes d'interface en régime harmonique en revenant sur le processus d'homogénéisation classique, pour un milieu dissipatif. Pour des problèmes de transmission, il est connu que les modèles issus de cette méthode perdent en précision du fait de la présence de couches limites à l'interface. Nous proposons un modèle enrichi au niveau de l'interface. En combinant la méthode d'homogénéisation double-échelle et celle des développements asymptotiques raccordés, nous construisons des conditions de transmission non standards faisant intervenir des opérateurs différentiels le long de l'interface. Le calcul de ces conditions nécessite la résolution de problèmes de cellule et de problèmes non standards posés dans des bandes périodiques infinies. Une analyse d'erreur confirme l'amélioration de la précision du modèle. Des simulations numériques illustrent l'efficacité de ces nouvelles conditions. Enfin, cette démarche est reproduite formellement dans le cas des matériaux à fort contraste se comportant comme des métamatériaux. Nous montrons alors que ces nouvelles conditions permettent de régulariser le problème de transmission dans les cas critiques. / We are interested in transmission problems between dielectrics and metamaterials, that is to say media with unusual electromagnetic properties such as negative constants at some frequencies. These media are often made of periodic assemblies of resonant micro-structures and in this case the homogenization theory can justify mathematically these effective properties. A preliminary part deals with these problems in the harmonic domain and in geometry with separation of variables.Analytical computations are done and reveal in the so-called critical cases some mathematical diffculties: the solutions do not have the standard regularity and the problem can even be ill-posed.The first part examines these transmission problems in the time domain for which metamaterials are modelled by dispersive models (Drude model or Lorentz model for instance). The diffculties reside in the choice of a discretization scheme but especially in the construction of absorbing conditions. The method used here is the use of Perfectly Matched Layers (PMLs). Since classical PMLs are unstable for these models due to the presence of backward waves, we propose a new class of PMLs for which we conduct a stability analysis. The latter allows us to build stable PMLs. They are then used to simulate the long-time behaviour of a transmission problem; we illustrate the fact that the limit amplitude principle can be faulted because of interface resonances.The second part aims to overcome these phenomena by coming back to the classical homogenization in the harmonic domain, for dissipative media. For transmission problems, it is known that models resulting from this method lose accuracy due to the presence of boundary layers at the interface. We propose an enriched model at the interface: by combining the method of two-scale homogenization and that of matched asymptotic expansions, we build non-standard transmission conditions involving tangential derivatives along the interface (Laplace-Beltrami operators). This requires to solve cell problems and non-standardproblems in infinite periodic bands. An error analysis confirms the improvement of the accuracy of the model and numerical simulations show the effectiveness of these new conditions. Finally, this approach is formally reproduced in the case of high contrast materials which behave like metamaterials. We show that these new conditions regularise the transmission problem in the critical cases.
2

Approximation de haute précision des problèmes de diffraction.

Laurens, Sophie 01 March 2010 (has links) (PDF)
Cette thèse examine deux façons de diminuer la complexité des problèmes de propagation d'ondes diffractées par un obstacle borné : la diminution des domaines de calcul à l'aide de milieux fictifs absorbants permettant l'adjonction de conditions aux limites exactes et la recherche d'une nouvelle approximation spatiale sous forme polynomiale donnant lieu à des schémas explicites où la stabilité est indépendante de l'ordre choisi. Dans un premier temps, on réduit le domaine de calcul autour de domaines non nécessairement convexes, mais propres aux problèmes de scattering (non trapping), à l'aide de la méthode des Perfectly Matched Layers (PML). Il faut alors considérer des domaines d'exhaustion difféomorphes à des convexes avec des hypothèses "presque" nécessaires. Pour les Equations de type Maxwell et Ondes, l'existence et l'unicité sont montrées dans tout l'espace et en domaine artificiellement borné, tant en fréquentiel qu'en temporel. La décroissance est analysée localement et asymptotiquement et des simulations numériques sont proposées. La deuxième partie de ce travail est une alternative à l'approximation de type Galerkin Discontinu, inspirée des résultats de régularité de J. Rauch, présentant l'avantage de conserver une condition CFL de type Volumes Finis indépendante de l'ordre d'approximation, aussi bien pour des maillages structurés que déstructurés. La convergence de cette méthode est démontrée via la consistance et la stabilité, grâce au théorème d'équivalence de Lax-Richtmyer pour des domaines structurés. En déstructuré, la consistance ne pouvant plus s'établir au moyen de la formulation de Taylor, la convergence n'est plus assurée, mais les premiers tests numériques bidimensionnels donnent d'excellents résultats.
3

Perfectly Matched Layers and High Order Difference Methods for Wave Equations

Duru, Kenneth January 2012 (has links)
The perfectly matched layer (PML) is a novel technique to simulate the absorption of waves in unbounded domains. The underlying equations are often a system of second order hyperbolic partial differential equations. In the numerical treatment, second order systems are often rewritten and solved as first order systems. There are several benefits with solving the equations in second order formulation, though. However, while the theory and numerical methods for first order hyperbolic systems are well developed, numerical techniques to solve second order hyperbolic systems are less complete. We construct a strongly well-posed PML for second order systems in two space dimensions, focusing on the equations of linear elasto-dynamics. In the continuous setting, the stability of both first order and second order formulations are linearly equivalent. We have found that if the so-called geometric stability condition is violated, approximating the first order PML with standard central differences leads to a high frequency instability at most resolutions. In the second order setting growth occurs only if growing modes are well resolved. We determine the number of grid points that can be used in the PML to ensure a discretely stable PML, for several anisotropic elastic materials. We study the stability of the PML for problems where physical boundaries are important. First, we consider the PML in a waveguide governed by the scalar wave equation. To ensure the accuracy and the stability of the discrete PML, we derived a set of equivalent boundary conditions. Second, we consider the PML for second order symmetric hyperbolic systems on a half-plane. For a class of stable boundary conditions, we derive transformed boundary conditions and prove the stability of the corresponding half-plane problem. Third, we extend the stability analysis to rectangular elastic waveguides, and demonstrate the stability of the discrete PML. Building on high order summation-by-parts operators, we derive high order accurate and strictly stable finite difference approximations for second order time-dependent hyperbolic systems on bounded domains. Natural and mixed boundary conditions are imposed weakly using the simultaneous approximation term method. Dirichlet boundary conditions are imposed strongly by injection. By constructing continuous strict energy estimates and analogous discrete strict energy estimates, we prove strict stability.
4

The inverse medium problem in PML-truncated elastic media

Kucukcoban, Sezgin 07 February 2011 (has links)
We introduce a mathematical framework for the inverse medium problem arising commonly in geotechnical site characterization and geophysical probing applications, when stress waves are used to probe the material composition of the interrogated medium. Specifically, we attempt to recover the spatial distribution of Lame's parameters ( and μ) of an elastic semi-infinite arbitrarily heterogeneous medium, using surface measurements of the medium's response to prescribed dynamic excitations. The focus is on characterizing near-surface deposits, and to this end, we develop a method that is implemented directly in the time-domain, is driven by the full waveform response collected at receivers on the surface, while the domain of interest is truncated using Perfectly-Matched-Layers (PMLs) to limit the originally semi-infinite extent of the physical domain. There are two key issues associated with the problem at hand: (a) the forward problem, namely the numerical simulation of the wave motion in the domain of interest; and (b) the framework and strategies for tackling the inverse problem. To address the forward problem, it is necessary that the domain of interest be truncated, and the resulting finite domain be forced to mimic the physics of the original problem: to this end, we introduce unsplit-field PMLs, and develop and implement two new formulations, one fully-mixed and one hybrid (mixed coupled with a non-mixed approach) that model wave motion within the, now PML-truncated, domain. To address the inverse problem, we adopt a partial-differential-equation-constrained optimization framework that results in the usual triplet of an initial-and-boundary-value forward problem, a final-and-boundary-value adjoint problem, and a time-independent boundary-value control problem. This triplet of boundary-value-problems is used to guide the optimizer to the target profile of the spatially distributed Lame parameters. Given the multiplicity of solutions, we assist the optimizer, by deploying regularization schemes, continuation schemes (regularization factor and source-frequency content), as well as a physics-driven simple procedure to bias the search directions. We report numerical examples attesting to the quality, stability, and efficiency of the forward wave modeling. We also report moderate success with numerical experiments targeting inversion of both smooth and sharp profiles in two dimensions. / text
5

Parametric Studies of Soil-Steel Composite Bridges for Dynamic Loads, a Frequency Domain Approach using 3D Finite Element Modelling

Ljung, Jonathan January 2019 (has links)
In this thesis, parametric studies have been performed for a soil-steel compositebridge to determine and investigate the most influential parameters on the dynamicresponse.High-speed railways are currently being planned in Sweden by the Swedish TransportAdministration with train speeds up to 320 km/h. According to the European designcodes, bridges must be verified with respect to dynamic resonance behaviour for trainspeeds exceeding 200 km/h. However, there are no guidelines or design criterion forperforming dynamic verifications of soil-steel composite bridges. The aim of thisthesis has therefore been to investigate the influence of the geometry and materialproperties of soil-steel composite bridges on their dynamic response.This thesis is based upon the frequency domain approach for dynamic analysis ofa soil-steel composite bridge using finite element software. In 2018, field measurementswere performed on a soil-steel composite bridge in Hårestorp, Sweden. Areference finite element model was developed based on previous research and wasverified against these field measurements. Parametric studies where performed byextrapolating the geometry of the reference model, focusing primarily on the crownheight, culvert span width and the location of the bedrock. Sensitivity analyses ofthe density- and stiffness of the soil was also performed.The parametric studies showed that the crown height was the most influential parameterwith respect to the amplitude of the resonance peak. Increasing it from 1 mto 3 m reduced the amplitude by approximately 70 %. An increased span width ofthe culvert was found to reduce the frequency and amplitude of the resonance peak,however increasing the stiffness of the culvert increased the resonance frequency.The position of the rock layer also reduced the amplitude of the resonance peak iflowered, likely because of lessened wave reflection. The lowest rock level investigatedshowed a significant decrease of more than 70 % in amplitude. However, the modelused to calculate this response was heavily extrapolated and thus difficult to verify.The sensitivity analyses showed that the soil density- and stiffness was negativelyand positively correlated with the resonance frequency, respectively. Additionally,the soil density lowered the amplitude of the resonance peak if increased.
6

A mixed unsplit-field PML-based scheme for full waveform inversion in the time-domain using scalar waves

Kang, Jun Won, 1975- 11 October 2010 (has links)
We discuss a full-waveform based material profile reconstruction in two-dimensional heterogeneous semi-infinite domains. In particular, we try to image the spatial variation of shear moduli/wave velocities, directly in the time-domain, from scant surficial measurements of the domain's response to prescribed dynamic excitation. In addition, in one-dimensional media, we try to image the spatial variability of elastic and attenuation properties simultaneously. To deal with the semi-infinite extent of the physical domains, we introduce truncation boundaries, and adopt perfectly-matched-layers (PMLs) as the boundary wave absorbers. Within this framework we develop a new mixed displacement-stress (or stress memory) finite element formulation based on unsplit-field PMLs for transient scalar wave simulations in heterogeneous semi-infinite domains. We use, as is typically done, complex-coordinate stretching transformations in the frequency-domain, and recover the governing PDEs in the time-domain through the inverse Fourier transform. Upon spatial discretization, the resulting equations lead to a mixed semi-discrete form, where both displacements and stresses (or stress histories/memories) are treated as independent unknowns. We propose approximant pairs, which numerically, are shown to be stable. The resulting mixed finite element scheme is relatively simple and straightforward to implement, when compared against split-field PML techniques. It also bypasses the need for complicated time integration schemes that arise when recent displacement-based formulations are used. We report numerical results for 1D and 2D scalar wave propagation in semi-infinite domains truncated by PMLs. We also conduct parametric studies and report on the effect the various PML parameter choices have on the simulation error. To tackle the inversion, we adopt a PDE-constrained optimization approach, that formally leads to a classic KKT (Karush-Kuhn-Tucker) system comprising an initial-value state, a final-value adjoint, and a time-invariant control problem. We iteratively update the velocity profile by solving the KKT system via a reduced space approach. To narrow the feasibility space and alleviate the inherent solution multiplicity of the inverse problem, Tikhonov and Total Variation (TV) regularization schemes are used, endowed with a regularization factor continuation algorithm. We use a source frequency continuation scheme to make successive iterates remain within the basin of attraction of the global minimum. We also limit the total observation time to optimally account for the domain's heterogeneity during inversion iterations. We report on both one- and two-dimensional examples, including the Marmousi benchmark problem, that lead efficiently to the reconstruction of heterogeneous profiles involving both horizontal and inclined layers, as well as of inclusions within layered systems. / text
7

Development of an Electromagnetic Glottal Waveform Sensor for Applications in High Acoustic Noise Environments

Pelteku, Altin E. 14 January 2004 (has links)
The challenges of measuring speech signals in the presence of a strong background noise cannot be easily addressed with traditional acoustic technology. A recent solution to the problem considers combining acoustic sensor measurements with real-time, non-acoustic detection of an aspect of the speech production process. While significant advancements have been made in that area using low-power radar-based techniques, drawbacks inherent to the operation of such sensors are yet to be surmounted. Therefore, one imperative scientific objective is to devise new, non-invasive non-acoustic sensor topologies that offer improvements regarding sensitivity, robustness, and acoustic bandwidth. This project investigates a novel design that directly senses the glottal flow waveform by measuring variations in the electromagnetic properties of neck tissues during voiced segments of speech. The approach is to explore two distinct sensor configurations, namely the“six-element" and the“parallel-plate" resonator. The research focuses on the modeling aspect of the biological load and the resonator prototypes using multi-transmission line (MTL) and finite element (FE) simulation tools. Finally, bench tests performed with both prototypes on phantom loads as well as human subjects are presented.
8

Rayonnement sonore dans un écoulement subsonique complexe en régime harmonique : analyse et simulation numérique du couplage entre les phénomènes acoustiques et hydrodynamiques / Sound radiation in a complex subsonic mean flow in frequency regime : analysis and numerical simulations of the coupling between acoustic and hydrodynamic phenomena

Peynaud, Emilie 21 June 2013 (has links)
La thèse porte sur la simulation, en régime fréquentiel, du rayonnement acoustique en écoulement subsonique quelconque et dans un domaine infini. L'approche choisie s'appuie sur la résolution d'un système équivalent aux équations d'Euler linéarisées : le modèle de Galbrun. Ce modèle repose sur une représentation mixte Lagrange-Euler et aboutit à une équation dont l'unique inconnue est la perturbation du déplacement Lagrangien. Une des difficultés de l'approche de Galbrun est qu'une discrétisation directe de cette équation par une méthode d'éléments finis standard n'est pas stable. Un moyen de contourner cet obstacle est d'écrire une équation augmentée en ajoutant une nouvelle inconnue, le rotationnel du déplacement, appelée par abus vorticité. Cette approche conduit à un système qui couple une équation de type équation des ondes avec une équation de transport en régime fréquentiel. Et elle permet l'utilisation de couches parfaitement adaptées (PML) pour borner le domaine de calcul. La première partie du manuscrit est dédiée à l’étude de l’équation de transport harmonique et de sa résolution numérique, en particulier par un schéma de type Galerkin discontinu. Un des points délicats est lié au caractère oscillant des solutions de l'équation. Une fois cette étape franchie, la résolution du problème de propagation acoustique a été abordée. Une approximation basée sur l'utilisation d'éléments finis mixtes continus-discontinus avec couches parfaitement adaptées (PML) a été étudiée. En particulier, les caractères bien posés des problèmes continu et discret ainsi que la convergence du schéma numérique ont été démontrés sous certaines conditions sur l'écoulement porteur. Enfin, une mise en œuvre a été effectuée. Les résultats montrent la validité de cette approche mais aussi sa pertinence dans le cas d'écoulements complexes, voire d'écoulements dits instables / This thesis deals with the numerical simulation of time harmonic acoustic propagation in an arbitrary mean flow in an unbounded domain. Our approach is based on an equation equivalent to the linearized Euler equations called the Galbrun equation. It is derived from a mixed Eulerian-Lagrangian formulation and results in a single equation whose only unknown is the perturbation of the Lagrangian displacement. A direct solution using finite elements is unstable but this difficulty can be overcome by using an augmented equation which is constructed by adding a new unknown, the vorticity, defined as the curl of the displacement. This leads to a set of equations coupling a wave like equation with a time harmonic transport equation which allows the use of perfectly matched layers (PML) at artificial boundaries to bound the computational domain. The first part of the thesis is a study of the time harmonic transport equation and its approximation by means of a discontinuous Galerkin scheme, the difficulties coming from the oscillating behaviour of its solutions. Once these difficulties have been overcome, it is possible to deal with the resolution of the acoustic propagation problem. The approximation method is based on a mixed continuous-Galerkin and discontinuous-Galerkin finite element scheme. The well-posedness of both the continuous and discrete problems is established and the convergence of the approximation under some mean flow conditions is proved. Finally a numerical implementation is achieved and numerical results are given which confirm the validity of the method and also show that it is relevant in complex cases, even for unstable flows
9

Fast algorithms for frequency domain wave propagation

Tsuji, Paul Hikaru 22 February 2013 (has links)
High-frequency wave phenomena is observed in many physical settings, most notably in acoustics, electromagnetics, and elasticity. In all of these fields, numerical simulation and modeling of the forward propagation problem is important to the design and analysis of many systems; a few examples which rely on these computations are the development of metamaterial technologies and geophysical prospecting for natural resources. There are two modes of modeling the forward problem: the frequency domain and the time domain. As the title states, this work is concerned with the former regime. The difficulties of solving the high-frequency wave propagation problem accurately lies in the large number of degrees of freedom required. Conventional wisdom in the computational electromagnetics commmunity suggests that about 10 degrees of freedom per wavelength be used in each coordinate direction to resolve each oscillation. If K is the width of the domain in wavelengths, the number of unknowns N grows at least by O(K^2) for surface discretizations and O(K^3) for volume discretizations in 3D. The memory requirements and asymptotic complexity estimates of direct algorithms such as the multifrontal method are too costly for such problems. Thus, iterative solvers must be used. In this dissertation, I will present fast algorithms which, in conjunction with GMRES, allow the solution of the forward problem in O(N) or O(N log N) time. / text

Page generated in 0.0901 seconds