Spelling suggestions: "subject:"1plastic wave equation"" "subject:"2plastic wave equation""
1 |
Numerics of Elastic and Acoustic Wave MotionVirta, Kristoffer January 2016 (has links)
The elastic wave equation describes the propagation of elastic disturbances produced by seismic events in the Earth or vibrations in plates and beams. The acoustic wave equation governs the propagation of sound. The description of the wave fields resulting from an initial configuration or time dependent forces is a valuable tool when gaining insight into the effects of the layering of the Earth, the propagation of earthquakes or the behavior of underwater sound. In the most general case exact solutions to both the elastic wave equation and the acoustic wave equation are impossible to construct. Numerical methods that produce approximative solutions to the underlaying equations now become valuable tools. In this thesis we construct numerical solvers for the elastic and acoustic wave equations with focus on stability, high order of accuracy, boundary conditions and geometric flexibility. The numerical solvers are used to study wave boundary interactions and effects of curved geometries. We also compare the methods that we have constructed to other methods for the simulation of elastic and acoustic wave motion.
|
2 |
Direct and Inverse scattering problems for elastic wavesXiaokai Yuan (6711479) 16 August 2019 (has links)
<p> In this thesis, both direct and inverse elastic scattering problems are considered. For a given incident wave, the direct problem is to determine the displacement of wave field from the known structure, which could be an obstacle or a surface in this thesis; The inverse problem is to determine the structure from the measurement of displacement on an artificial boundary.</p><p>In the second chapter, we consider the scattering of an elastic plane wave by a rigid obstacle, which is immersed in a homogeneous and isotropic elastic medium in two dimensions. Based on a Dirichlet-to-Neumann (DtN) operator, an exact transparent boundary condition is introduced and the scattering problem is formulated as a boundary value problem of the elastic wave equation in a bounded domain. By developing a new duality argument, an a posteriori error estimate is derived for the discrete problem by using the finite element method with the truncated DtN operator. The a posteriori error estimate consists of the finite element approximation error and the truncation error of the DtN operator which decays exponentially with respect to the truncation parameter. An adaptive finite element algorithm is proposed to solve the elastic obstacle scattering problem, where the truncation parameter is determined through the truncation error and the mesh elements for local refinements are chosen through the finite element discretization error.<br></p><p>In chapter 3, we extend the argument developed in chapter 2 to elastic surface grating problem, where the surface is assumed to be periodic and elastic rigid; Then, we treat the obstacle scattering in three dimensional space; The direct problem is shown to have a unique weak solution by examining its variational formulation. The domain derivative is studied and a frequency continuation method is developed for the inverse problem. Finally, in chapter 4, a rigorous mathematical model and an efficient computational method are proposed to solve the inverse elastic surface scattering problem which arises from the near-field imaging of periodic structures. The surface is assumed to be a small and smooth perturbation of an elastically rigid plane. By placing a rectangle slab of a homogeneous and isotropic elastic medium with larger mass density above the surface, more propagating wave modes can be utilized from the far-field data which contributes to the reconstruction resolution. Requiring only a single illumination, the method begins with the far-to-near field data conversion and utilized the transformed field expansion to derive an analytic solution for the direct problem, which leads to an explicit inversion formula for the inverse problem; Moreover, a nonlinear correction scheme is developed to improve the accuracy of the reconstruction; Numerical examples are presented to demonstrate the effectiveness of the proposed methods for solving the questions mentioned above.<br></p>
|
3 |
Contributions à la modélisation mathématique et à l'algorithmique parallèle pour l'optimisation d'un propagateur d'ondes élastiques en milieu anisotrope / Contributions to the mathematical modeling and to the parallel algorithmic for the optimization of an elastic wave propagator in anisotropic mediaBoillot, Lionel 12 December 2014 (has links)
La méthode d’imagerie la plus répandue dans l’industrie pétrolière est la RTM (Reverse Time Migration) qui repose sur la simulation de la propagation des ondes dans le sous-sol. Nous nous sommes concentrés sur un propagateur d'ondes élastiques 3D en milieu anisotrope de type TTI (Tilted Transverse Isotropic). Nous avons directement travaillé dans le code de recherche de Total DIVA (Depth Imaging Velocity Analysis), basé sur une discrétisation par la méthode de Galerkin Discontinue et le schéma Leap-Frog, et développé pour le calcul parallèle intensif – HPC (High Performance Computing). Nous avons ciblé plus particulièrement deux contributions possibles qui, si elles supposent des compétences très différentes, ont la même finalité : réduire les coûts de calculs requis pour la simulation. D'une part, les conditions aux limites classiques de type PML (Perfectly Matched Layers) ne sont pas stables dans des milieux TTI. Nous avons proposé de formuler une CLA (Conditions aux Limites Absorbantes) stable dans des milieux anisotropes. La méthode de construction repose sur les propriétés des courbes de lenteur, ce qui donne à notre approche un caractère original. D'autre part, le parallélisme initial, basé sur une décomposition de domaine et des communications par passage de messages à l'aide de la bibliothèque MPI, conduit à un déséquilibrage de charge qui détériore son efficacité parallèle. Nous avons corrigé cela en remplaçant le paradigme parallélisme par l'utilisation de la programmation à base de tâches sur support d'exécution. Cette thèse a été réalisée dans le cadre de l'action de recherche DIP (Depth Imaging Partnership) qui lie la compagnie pétrolière Total et Inria. / The most common method of Seismic Imaging is the RTM (Reverse Time Migration) which depends on wave propagation simulations in the subsurface. We focused on a 3D elastic wave propagator in anisotropic media, more precisely TTI (Tilted Transverse Isotropic). We directly worked in the Total code DIVA (Depth Imaging Velocity Analysis) which is based on a discretization by the Discontinuous Galerkin method and the Leap-Frog scheme, and developed for intensive parallel computing – HPC (High Performance Computing). We choose to especially target two contributions. Although they required very different skills, they share the same goal: to reduce the computational cost of the simulation. On one hand, classical boundary conditions like PML (Perfectly Matched Layers) are unstable in TTI media. We have proposed a formulation of a stable ABC (Absorbing Boundary Condition) in anisotropic media. The technique is based on slowness curve properties, giving to our approach an original side. On the other hand, the initial parallelism, which is based on a domain decomposition and communications by message passing through the MPI library, leads to load-imbalance and so poor parallel efficiency. We have fixed this issue by replacing the paradigm for parallelism by the use of task-based programming through runtime system. This PhD thesis have been done in the framework of the research action DIP (Depth Imaging Partnership) between the Total oil company and Inria.
|
4 |
Fast algorithms for frequency domain wave propagationTsuji, Paul Hikaru 22 February 2013 (has links)
High-frequency wave phenomena is observed in many physical settings, most notably in acoustics, electromagnetics, and elasticity. In all of these fields, numerical simulation and modeling of the forward propagation problem is important to the design and analysis of many systems; a few examples which rely on these computations are the development of
metamaterial technologies and geophysical prospecting for natural resources. There are two modes of modeling the forward problem: the frequency domain and the time domain. As the title states, this work is concerned with the former regime.
The difficulties of solving the high-frequency wave propagation problem accurately lies in the large number of degrees of freedom required. Conventional wisdom in the computational electromagnetics commmunity suggests that about 10 degrees of freedom per wavelength be used in each coordinate direction to resolve each oscillation. If K is the width of the domain in wavelengths, the number of unknowns N grows at least by O(K^2) for surface discretizations and O(K^3) for volume discretizations in 3D. The memory requirements and asymptotic complexity estimates of direct algorithms such as the multifrontal method are too costly for such problems. Thus, iterative solvers must be used. In this dissertation, I will present fast algorithms which, in conjunction with GMRES, allow the solution of the forward problem in O(N) or O(N log N) time. / text
|
Page generated in 0.1075 seconds