• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 11
  • 11
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approche modulaire sur les espaces de formes, géométrie sous-riemannienne et anatomie computationnelle / Modular approach on shape spaces, Sub-Riemannian geometry and computational anatomy

Gris, Barbara 05 December 2016 (has links)
Dans cette thèse, nous développons un nouveau modèle de déformation pour étudier les formes. Les déformations, et les difféomorphismes en particulier, jouent un rôle fondamental dans l'étude statistique de formes, comme un moyen de mesurer et d'interpréter les différences entre des objets similaires. Les difféomorphismes résultent généralement d'une intégration d'un flot régulier de champs de vitesses, dont les paramètres n'ont jamais encore vraiment permis de contrôler localement les déformations. Nous proposons un nouveau modèle dans lequel les champs de vitesses sont construits grâce à la combinaison de quelques champs de vecteurs locaux et interprétables. Ces champs de vecteurs sont générés à l'aide d'une structure que nous appelons module de déformation. Un module de déformation génère un champ de vecteurs d'un type particulier (e.g. homothétie) choisi à l'avance: cela permet d'incorporer des contraintes dans le modèle de déformation. Ces contraintes peuvent correspondre à un savoir que l'on a sur les formes étudiées, ou à un point de vue à partir duquel on veut étudier ces formes. Dans un premier chapitre nous définissons les modules de déformation et nous en donnons des exemples variés. Nous expliquons également comment construire facilement un module de déformation adapté à des contraintes complexes en combinant des modules de déformations simples. Ensuite nous construisons des grandes déformations modulaires en tant que flot de champs de vecteurs générés par un module de déformation. Les champs de vecteurs générés par un module de déformation sont paramétrés par deux variables : une géométrique (descripteur géométrique) et une de contrôle. Nous associons également un coût à chaque couple de descripteur géométrique et de contrôle. Dans un deuxième chapitre nous expliquons comment utiliser un module de déformation donné pour étudier des formes. Nous construisons tout d'abord une structure sous-Riemannienne sur l'espace défini comme le produit de l'espace de formes et de celui des descripteurs géométriques. La métrique sous-Riemannienne vient du coût choisi : nous munissons le nouvel espace d'une métrique choisie, qui en générale n'est pas le pull-back d'une métrique sur les champs de vecteurs mais tient compte la manière dont les champs de vecteurs sont construits à partir des contraintes. Grâce à cette structure nous définissons une distance sous-Riemannienne et nous montrons l'existence des géodésiques (trajectoires dont la longueur vaut la distance entre les points de départ et d'arrivée). L'étude des géodésiques se ramène à un problème de contrôle optimal, elles peuvent être obtenues grâce à un formalisme Hamiltonien. En particulier nous montrons qu'elles peuvent être paramétrées par une variable initiale, le moment. Après cela nous présentons les grandes déformations modulaires optimales transportant une forme source sur une forme cible. Nous définissons également l'atlas modulaire d'une population de formes par la donnée d'une forme moyenne et d'une grande déformation modulaire par forme. Dans la discussion nous étudions un modèle alternatif dans lequel les géodésiques sont paramétrées en dimension plus petite. Dans un troisième chapitre nous présentons l'algorithme implémenté pour obtenir les grandes déformations ainsi que la descente de gradient estimant les atlas. Dans un dernier chapitre nous présentons plusieurs exemples numériques grâce auxquels nous étudions certains aspects de notre modèle. En particulier nous montrons que le choix du module de déformation utilisé influence la forme moyenne, et que choisir un module de déformation adapté permet d'effectuer simultanément des recalages rigides et non linéaires. Dans le dernier exemple nous étudions des formes sans a priori, nous utilisons donc un module correspondant à des contraintes faibles et nous montrons que l'atlas obtenu est toujours intéressant. / This thesis is dedicated to the development of a new deformation model to study shapes. Deformations, and diffeormophisms in particular, have played a tremendous role in the field of statistical shape analysis, as a proxy to measure and interpret differences between similar objects but with different shapes. Diffeomorphisms usually result from the integration of a flow of regular velocity fields, whose parameters have not enabled so far a full control of the local behaviour of the deformation. We propose a new model in which velocity fields are built on the combination of a few local and interpretable vector fields. These vector fields are generated thanks to a structure which we name deformation module. Deformation modules generate vector fields of a particular type (e.g. a scaling) chosen in advance: they allow to incorporate a constraint in the deformation model. These constraints can correspond either to an additional knowledge one would have on the shapes under study, or to a point of view from which one would want to study these shapes. In a first chapter we introduce this notion of deformation module and we give several examples to show how diverse they can be. We also explain how one can easily build complex deformation modules adapted to complex constraints by combining simple deformation modules. Then we introduce the construction of modular large deformations as flow of vector fields generated by a deformation module. Vector fields generated by a deformation module are parametrized by two variables: a geometrical one named geometrical descriptor and a control one. We build large deformations so that the geometrical descriptor follows the deformation of the ambient space. Then defining a modular large deformation corresponds to defining an initial geometrical descriptor and a trajectory of controls. We also associate a notion of cost for each couple of geometrical descriptor and control. In a second chapter we explain how we can use a given deformation module to study data shapes. We first build a sub-Riemannian structure on the space defined as the product of the data shape space and the space of geometrical descriptors. The sub-Riemannian metric comes from the chosen cost: we equip the new (shape) space with a chosen metric, which is not in general the pull-back of a metric on vector fields but takes into account the way vector fields are built with the chosen constraints. Thanks to this structure we define a sub-Riemannian distance on this new space and we show the existence, under some mild assumptions, of geodesics (trajectories whose length equals the distance between the starting and ending points). The study of geodesics amounts to an optimal control problem, and they can be estimated thanks to an Hamiltonian framework: in particular we show that they can be parametrized by an initial variable named momentum. Afterwards we introduce optimal modular large deformations transporting a source shape into a target shape. We also define the modular atlas of a population of shapes which is made of a mean shape, and one modular large deformation per shape. In the discussion we study an alternative model where geodesics are parametrized in lower dimension. In a third chapter we present the algorithm that was implemented in order to compute these modular large deformations and the gradient descent to estimate the optimal ones as well as mean shapes. In a last chapter we introduce several numerical examples thanks to which we study specific aspects of our model. In particular we show that the choice of the used deformation module influences the form of the estimated mean shape, and that by choosing an adapted deformation module we are able to perform in a satisfying and robust way simultaneously rigid and non linear registration. In the last example we study shapes without any prior knowledge, then we use a module corresponding to weak constraints and we show that the atlas computation still gives interesting results.
2

The Modelling of Biological Growth: a Pattern Theoretic Approach

Portman, Nataliya 07 December 2009 (has links)
Mathematical and statistical modeling and analysis of biological growth using images collected over time are important for understanding of normal and abnormal development. In computational anatomy, changes in the shape of a growing anatomical structure have been modeled by means of diffeomorphic transformations in the background coordinate space. Various image and landmark matching algorithms have been developed for inference of large transformations that perform image registration consistent with the material properties of brain anatomy under study. However, from a biological perspective, it is not material constants that regulate growth, it is the genetic control system. A pattern theoretic model called the Growth as Random Iterated Diffeomorphisims (GRID) introduced by Ulf Grenander (Brown University) constructs growth-induced transformations according to fundamental biological principles of growth. They are governed by an underlying genetic control that is expressed in terms of probability laws governing the spatial-temporal patterns of elementary cell decisions (e.g., cell division/death). This thesis addresses computational and stochastic aspects of the GRID model and develops its application to image analysis of growth. The first part of the thesis introduces the original GRID view of growth-induced deformation on a fine time scale as a composition of several, elementary, local deformations each resulting from a random cell decision, a highly localized event in space-time called a seed. A formalization of the proposed model using theory of stochastic processes is presented, namely, an approximation of the GRID model by the diffusion process and the Fokker-Planck equation describing the evolution of the probability density of seed trajectories in space-time. Its time-dependent and stationary numerical solutions reveal bimodal distribution of a random seed trajectory in space-time. The second part of the thesis considers the growth pattern on a coarse time scale which underlies visible shape changes seen in images. It is shown that such a "macroscopic" growth pattern is a solution to a deterministic integro-differential equation in the form of a diffeomorphic flow dependent on the GRID growth variables such as the probability density of cell decisions and the rate of contraction/expansion. Since the GRID variables are unobserved, they have to be estimated from image data. Using the GRID macroscopic growth equation such an estimation problem is formulated as an optimal control problem. The estimated GRID variables are optimal controls that force the image of an initial organism to be continuously transformed into the image of a grown organism. The GRID-based inference method is implemented for inference of growth properties of the Drosophila wing disc directly from confocal micrographs of Wingless gene expression patterns.
3

The Modelling of Biological Growth: a Pattern Theoretic Approach

Portman, Nataliya 07 December 2009 (has links)
Mathematical and statistical modeling and analysis of biological growth using images collected over time are important for understanding of normal and abnormal development. In computational anatomy, changes in the shape of a growing anatomical structure have been modeled by means of diffeomorphic transformations in the background coordinate space. Various image and landmark matching algorithms have been developed for inference of large transformations that perform image registration consistent with the material properties of brain anatomy under study. However, from a biological perspective, it is not material constants that regulate growth, it is the genetic control system. A pattern theoretic model called the Growth as Random Iterated Diffeomorphisims (GRID) introduced by Ulf Grenander (Brown University) constructs growth-induced transformations according to fundamental biological principles of growth. They are governed by an underlying genetic control that is expressed in terms of probability laws governing the spatial-temporal patterns of elementary cell decisions (e.g., cell division/death). This thesis addresses computational and stochastic aspects of the GRID model and develops its application to image analysis of growth. The first part of the thesis introduces the original GRID view of growth-induced deformation on a fine time scale as a composition of several, elementary, local deformations each resulting from a random cell decision, a highly localized event in space-time called a seed. A formalization of the proposed model using theory of stochastic processes is presented, namely, an approximation of the GRID model by the diffusion process and the Fokker-Planck equation describing the evolution of the probability density of seed trajectories in space-time. Its time-dependent and stationary numerical solutions reveal bimodal distribution of a random seed trajectory in space-time. The second part of the thesis considers the growth pattern on a coarse time scale which underlies visible shape changes seen in images. It is shown that such a "macroscopic" growth pattern is a solution to a deterministic integro-differential equation in the form of a diffeomorphic flow dependent on the GRID growth variables such as the probability density of cell decisions and the rate of contraction/expansion. Since the GRID variables are unobserved, they have to be estimated from image data. Using the GRID macroscopic growth equation such an estimation problem is formulated as an optimal control problem. The estimated GRID variables are optimal controls that force the image of an initial organism to be continuously transformed into the image of a grown organism. The GRID-based inference method is implemented for inference of growth properties of the Drosophila wing disc directly from confocal micrographs of Wingless gene expression patterns.
4

Analysis of geometric and functional shapes with extensions of currents : applications to registration and atlas estimation

Charon, Nicolas 14 November 2013 (has links) (PDF)
This thesis addresses several questions related to the recent field of computational anatomy. Broadly speaking, computational anatomy intends to analyse shape variability among populations of anatomical structures. In this work, we are focused, in the first place, on the case of datasets of curves, surfaces and more generally submanifolds. Our goal is to provide a mathematical and numerical setting to build relevant data attachment terms between those objects in the purpose of embedding it into the large diffeomorphic metric mapping (LDDMM) model for shape registration. Previous approaches have been relying on the concept of currents that represents oriented submanifolds. We first propose an extension of these methods to the situation of non-oriented shapes by adapting the concept of varifolds from geometric measure theory. In the second place, we focus on the study of geometrico-functional structures we call 'functional shapes' (or fshapes), which combine varying geometries across individuals with signal functions defined on these shapes. We introduce the new notion of fshape metamorphosis to generalize the idea of deformation groups in the pure geometrical case. In addition, we define the extended setting of 'functional currents' to quantify dissimilarity between fshapes and thus perform geometrico-functional registration between such objects. Finally, in the last part of the thesis, we move on to the issue of analyzing entire groups of individuals (shapes or fshapes) together. In that perspective, we introduce an atlas estimation variational formulation that we prove to be mathematically well-posed and build algorithms to estimate templates and atlases from populations, as well as tools to perform statistical analysis and classification. All these methods are evaluated on several applications to synthetic datasets on the one hand and real datasets from biomedical imaging on the other.
5

Analysis of geometric and functional shapes with extensions of currents : applications to registration and atlas estimation / Analyse de formes géométriques et fonctionnelles via des extensions de la notion de courant : applications au recalage difféomorphique et à l'estimation d'atlas en anatomie numérique

Charon, Nicolas 14 November 2013 (has links)
Cette thèse s'articule autour de problématiques liées au domaine récent de l'anatomie numérique dont l'objet est de fournir des cadres à la fois mathématiques et numériques pour estimer la variabilité statistique au sein de populations de formes géométriques. Dans ce travail, on s'intéresse dans un premier temps au cas d'ensemble de courbes, de surfaces ou sous-variétés avec pour premier objectif de définir une représentation et des termes d'attache aux données adéquats pour les problèmes de recalage par grande déformation (LDDMM). Les précédentes approches reposant sur le cadre des courants qui traite le cas d'objets orientés, nous proposons une extension pour des formes géométriques non-orientées via la représentation des varifolds issue de la théorie géométrique de la mesure. Dans un second temps, ce travail se penche sur l'étude d'objets géométrico-fonctionnels aussi baptisés 'formes fonctionnelles', c'est à dire de fonctions ou de signaux définis sur des supports géométriques variables entre les individus. On définit notamment la notion de métamorphoses géométrico-fonctionnelles pour généraliser celle de déformation à ce contexte ainsi que la notion de courant fonctionnel pour mesurer la dissimilarité entre deux formes fonctionnelles. Ceci débouche assez naturellement sur un tout nouveau cadre mathématique et algorithmique permettant d'étendre les outils usuels de recalage difféomorphique. Enfin, on s'intéresse à la situation plus générale de l'estimation et l'analyse d'atlas pour des ensembles de telles structures en proposant en particulier une formulation mathématique bien posée pour de tels problèmes ainsi qu'un algorithme d'estimation simultanée géométrie/fonction puis des outils pour l'analyse statistique et la classification. Ces méthodes sont illustrées sur quelques jeux de données synthétiques et d'autres issues de l'imagerie biomédicale. / This thesis addresses several questions related to the recent field of computational anatomy. Broadly speaking, computational anatomy intends to analyse shape variability among populations of anatomical structures. In this work, we are focused, in the first place, on the case of datasets of curves, surfaces and more generally submanifolds. Our goal is to provide a mathematical and numerical setting to build relevant data attachment terms between those objects in the purpose of embedding it into the large diffeomorphic metric mapping (LDDMM) model for shape registration. Previous approaches have been relying on the concept of currents that represents oriented submanifolds. We first propose an extension of these methods to the situation of non-oriented shapes by adapting the concept of varifolds from geometric measure theory. In the second place, we focus on the study of geometrico-functional structures we call 'functional shapes' (or fshapes), which combine varying geometries across individuals with signal functions defined on these shapes. We introduce the new notion of fshape metamorphosis to generalize the idea of deformation groups in the pure geometrical case. In addition, we define the extended setting of 'functional currents' to quantify dissimilarity between fshapes and thus perform geometrico-functional registration between such objects. Finally, in the last part of the thesis, we move on to the issue of analyzing entire groups of individuals (shapes or fshapes) together. In that perspective, we introduce an atlas estimation variational formulation that we prove to be mathematically well-posed and build algorithms to estimate templates and atlases from populations, as well as tools to perform statistical analysis and classification. All these methods are evaluated on several applications to synthetic datasets on the one hand and real datasets from biomedical imaging on the other.
6

Geometrical Growth Models for Computational Anatomy / Modèles géométriques de croissance en anatomie computationnelle

Kaltenmark, Irène 10 October 2016 (has links)
Dans le domaine de l'anatomie, à l'investissement massif dans la constitution de base de données collectant des données d'imagerie médicale, doit répondre le développement de techniques numériques modernes pour une quantification de la façon dont les pathologies affectent et modifie les structures biologiques. Le développement d'approches géométriques via les espaces homogènes et la géométrie riemannienne en dimension infinie, initialisé il y a une dizaine d'années par Christensen et Miller, et simultanément Trouvé et Younes, et mettant en œuvre des idées originales de d'Arcy Thompson, a permis de construire ces dernières années un cadre conceptuel extrêmement efficace pour attaquer le problème de la modélisation et de l'analyse de la variabilité de populations de formes. Néanmoins, à l'intégration de l'analyse longitudinale des données, ont émergé des phénomènes biologiques de croissance ou de dégénérescence se manifestant via des déformations spécifiques de nature non difféomorphique. On peut en effet observer lors de la croissance d'un composant organique, une apparition progressive de matière qui ne s'apparente pas à un simple étirement du tissu initial. Face à cette observation, nous proposons de garder l'esprit géométrique qui fait la puissance des approches difféomorphiques dans les espaces de formes mais en introduisant un concept assez général de déploiement où l'on modélise les phénomènes de croissance comme le déploiement optimal progressif d'un modèle préalablement replié dans une région de l'espace. Nous présentons donc une généralisation des méthodes difféomorphiques classiques pour modéliser plus fidèlement l'évolution de chaque individu d'une population et saisir l'ensemble de la dynamique de croissance. Nous nous appuyons sur l'exemple concret de la croissance des cornes animales. La considération d'un a priori sur la dynamique de croissance de la corne, nous permet de construire un chemin continu dans un espace de formes, modélisant l'évolution de la corne de sa naissance, d'un état réduit à un point (comme l'état d'embryon pour un humain ou de graine pour une plante) à un âge adulte quelconque de corne bien déployée. Au lieu d'étirer la corne, nous anticipons l'arrivée matière nouvelle en des endroits prédéfinis. Pour cela, nous définissons une forme mère indépendante du temps dans un espace virtuel, qui est progressivement plongée dans l'espace ambiant en fonction d'un marqueur temporel prédéfini sur la forme mère. Finalement, nous aboutissons à un nouveau problème de contrôle optimal pour l'assimilation de données de surfaces évoluant dans le temps, conduisant à un problème intéressant dans le domaine du calcul des variations où le choix pour la représentation des données, courant ou varifold, joue un rôle inattendu. / The Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework has proved to be highly efficient for addressing the problem of modelling and analysis of the variability of populations of shapes, allowing for the direct comparison and quantization of diffeomorphic morphometric changes. However, the analysis of medical imaging data also requires the processing of more complex changes, which especially appear during growth or aging phenomena. The observed organisms are subject to transformations over the time which are no longer diffeomorphic, at least in a biological sense. One reason might be a gradual creation of new material uncorrelated to the preexisting one. For this purpose, we offer to extend the LDDMM framework to address the problem of non diffeomorphic structural variations in longitudinal scenarios during a growth or degenerative process. We keep the geometric central concept of a group of deformations acting on a shape space. However, the shapes will be encoded by a new enriched mathematical object allowing through partial mappings an intrinsic evolution dissociated from external deformations. We focus on the specific case of the growth of animal horns.Ultimately, we integrate these growth priors into a new optimal control problem for assimilation of time-varying surface data, leading to an interesting problem in the field of the calculus of variations where the choice of the attachment term on the data, current or varifold, plays an unexpected role.
7

Statistical models to learn the structural organisation of neural circuits from multimodal brain images : application to Gilles de la Tourette syndrome / Modèles statistiques pour apprendre l'organisation structurelle des circuits neuronaux à partir d'images multimodales du cerveau : application au syndrome de Gilles de la Tourette

Gori, Pietro 08 January 2016 (has links)
Nous proposons un cadre statistique pour analyser les anomalies morphologiques et organisationnelles altérant l'anatomie des circuits neuronaux chez les patients atteints du syndrome de Gilles de la Tourette. Les composants de chaque circuit (matière grise et blanche) sont représentés comme des maillages 3D et intégrés dans un seul complexe. Cela permet d'étudier leur organisation et surtout la connectivité structurelle. La méthode proposée est basée sur une approche statistique appelée construction d'atlas qui résulte en un template, capturant les invariants de la population, et en déformations template-vers-sujets, décrivant la variabilité morphologique. Premièrement, nous intégrons la construction d'atlas dans un cadre bayésien qui permet d'estimer automatiquement des paramètres autrement fixés. Deuxièmement, nous réduisons les ressources de calcul nécessaires au traitement de faisceaux de fibres en définissant un schéma d'approximation basée sur un nouveau modèle appelé courants pondérés. Troisièmement, nous décrivons un nouveau modèle de déformation pour la construction d'atlas qui permet de capturer les variations morphologiques et organisationnelles. On montre l'efficacité de la méthode par comparaison de deux groupes de 44 patients et 22 témoins. Les résultats soulignent des anomalies sur la forme des structures de la matière grise et sur la connectivité structurelle. / We propose a statistical framework to analyse morphological and organisational anomalies altering the anatomy of neural circuits in patients with Gilles de la Tourette syndrome. The components of each circuit, from both white and grey matter, are represented as 3D meshes and integrated in a single shape complex. This allows to study their organisation and in particular the structural connectivity. The proposed methodology is based on a statistical approach called atlas construction which results in a template complex, capturing the invariants of the population and in template-to-subject deformations, describing the morphological variability. First, we embed the atlas construction in a Bayesian framework which allows to automatically estimate important parameters otherwise fixed by the user. Second, we reduce the important computational resources required to process fiber bundles by defining an approximation scheme based on a new computational model called weighted currents. Third, we describe a new deformation scheme for the atlas construction which permits to model variations in structural connectivity and at the same time to capture global anatomical changes. We show the effectiveness of the proposed method by comparing two groups of 44 patients and 22 controls respectively. Results highlight anomalies about both the shape of grey matter structures and structural connectivity.
8

Morphometry of the human hippocampus from MRI and conventional MRI high field

Gerardin, Emilie 13 December 2012 (has links) (PDF)
The hippocampus is a gray matter structure in the temporal lobe that plays a key role in memory processes and in many diseases (Alzheimer's disease, epilepsy, depression ...).The development of morphometric models is essential for the study of the functional anatomy and structure alterations associated with different pathologies. The objective of this thesis is to develop and validate methods for morphometry of the hippocampus in two contexts: the study of the external shape of the hippocampus from conventional MRI (1.5T or 3T) with millimeter resolution, and the study of its internal structure from 7T MRI with high spatial resolution. These two settings correspond to the two main parts of the thesis.In the first part, we propose a method for the automatic classification of patients from shape descriptors. This method is based on a spherical harmonic decomposition which is combined with a support vector machine classifier (SVM). The method is evaluated in the context of automatic classification of patients with Alzheimer's disease (AD) patients, mild cognitive impairment (MCI) patients and healthy elderly subjects. It is also compared to other approaches and a more comprehensive validation is available in a population of 509 subjects from the ADNI database. Finally, we present another application of morphometry to study structural alterations associated with the syndrome of Gilles de la Tourette.The second part of the thesis is devoted to the morphometry of the internal structure of the hippocampus from MRI at 7 Tesla. Indeed, the internal structure of the hippocampus is rich and complex but inaccessible to conventional MRI. We first propose an atlas of the internal structure of the hippocampus from postmortem data acquired at 9.4T. Then, we propose to model the Ammon's horn and the subiculum as a skeleton and a local measure thickness. To do this, we introduce a variational method using original Hilbert spaces reproducing kernels. The method is validated on the postmortem atlas and evaluated on in vivo data from healthy subjects and patients with epilepsy acquired at 7T.
9

Morphometry of the human hippocampus from MRI and conventional MRI high field / Morphométrie de l'hippocampe humain à partir d'IRM conventionnelles et d'IRM à très haut champ

Gerardin, Emilie 13 December 2012 (has links)
L’hippocampe est une structure de substance grise du lobe temporal qui joue un rôle fondamental dans les processus de mémoire ainsi que dans de nombreuses pathologies (maladie d’Alzheimer, épilepsie, dépression...).Le développement de modèles morphométriques est essentiel pour étudier l’anatomie fonctionnelle de cette structure et les altérations associées à différentes pathologies. L’objectif de cette thèse est de développer et de valider des méthodes de morphométrie de l’hippocampe dans deux contextes distincts : l’étude de la forme externe de l’hippocampe à partir d’IRM conventionnelles (1.5T ou 3T) à résolution millimétrique, l’étude de sa structure interne à partir d’IRM 7T à très haute résolution spatiale. Ces deux contextes correspondent aux deux parties principales de la thèse.Dans une première partie, nous proposons une méthode pour la classification automatique de patients à partir de descripteurs morphométriques. Cette méthode repose sur une décomposition en harmoniques sphériques qui est combinée à un classifieur de type support vectormachine (SVM). La méthode est évaluée dans le contexte de la classification automatique de patients avec une maladie d’Alzheimer (MA), de patients mild cognitive impairment (MCI) et de sujets sains âgés. Elle est également comparée à d’autres approches et une validation plus exhaustive est proposée dans une population de 509 sujets issus de la base ADNI. Nous présentons enfin une autre application de la morphométrie pour l’étude des altérations structurelles associées au syndrome de Gilles de la Tourette.La seconde partie de la thèse est consacrée à la morphométrie de la structure interne de l’hippocampe à partir d’IRM à 7 Tesla. En effet, la structure interne de l’hippocampe est riche et complexe mais inaccessible à l’IRM conventionnelle. Nous proposons tout d’abord un atlas de la structure interne de l’hippocampe à partir de données postmortem acquises à 9.4T. Ensuite, nous proposons de modéliser la corne d’Ammon et le subiculum sous la forme d’un squelette et d’une mesure locale d’épaisseur. Pour ce faire, nous introduisons une méthode variationnelle originale utilisant des espaces de Hilbert à noyaux reproduisants. La méthode est ensuite validée sur l’atlas postmortem et évaluée sur des données in vivo de sujets sains et de patients avec épilepsie acquises à 7T. / The hippocampus is a gray matter structure in the temporal lobe that plays a key role in memory processes and in many diseases (Alzheimer's disease, epilepsy, depression ...).The development of morphometric models is essential for the study of the functional anatomy and structure alterations associated with different pathologies. The objective of this thesis is to develop and validate methods for morphometry of the hippocampus in two contexts: the study of the external shape of the hippocampus from conventional MRI (1.5T or 3T) with millimeter resolution, and the study of its internal structure from 7T MRI with high spatial resolution. These two settings correspond to the two main parts of the thesis.In the first part, we propose a method for the automatic classification of patients from shape descriptors. This method is based on a spherical harmonic decomposition which is combined with a support vector machine classifier (SVM). The method is evaluated in the context of automatic classification of patients with Alzheimer's disease (AD) patients, mild cognitive impairment (MCI) patients and healthy elderly subjects. It is also compared to other approaches and a more comprehensive validation is available in a population of 509 subjects from the ADNI database. Finally, we present another application of morphometry to study structural alterations associated with the syndrome of Gilles de la Tourette.The second part of the thesis is devoted to the morphometry of the internal structure of the hippocampus from MRI at 7 Tesla. Indeed, the internal structure of the hippocampus is rich and complex but inaccessible to conventional MRI. We first propose an atlas of the internal structure of the hippocampus from postmortem data acquired at 9.4T. Then, we propose to model the Ammon’s horn and the subiculum as a skeleton and a local measure thickness. To do this, we introduce a variational method using original Hilbert spaces reproducing kernels. The method is validated on the postmortem atlas and evaluated on in vivo data from healthy subjects and patients with epilepsy acquired at 7T.
10

Modèles de cycles normaux pour l'analyse des déformations / Normal cycle models for deformation analysis

Roussillon, Pierre 24 November 2017 (has links)
Dans cette thèse, nous développons un modèle du second ordre pour la représentation des formes (courbes et surfaces) grâce à la théorie des cycles normaux. Le cycle normal d'une forme est le courant associé à son fibré normal. En introduisant des métriques à noyaux sur les cycles normaux, nous obtenons une mesure de dissimilarité entre formes qui prend en compte leurs courbures. Cette mesure est ensuite utilisée comme terme d'attache aux données dans une optique d'appariement et d'analyse de formes par les déformations. Le chapitre 1 est une revue du domaine de l'analyse de formes par les déformations. Nous insistons plus particulièrement sur la mise en place théorique et numérique du modèle de Large Deformation Diffeomorphic Metric Mapping (LDDMM). Le chapitre 2 se concentre sur la représentation des formes par les cycles normaux dans un cadre unifié qui englobe à la fois les formes continues et discrètes. Nous précisons dans quelle mesure cette représentation contient des informations de courbure. Enfin nous montrons le lien entre le cycle normal d'une forme et son varifold. Dans le chapitre 3, nous introduisons les métriques à noyaux. Ainsi, nous pouvons considérer les cycles normaux dans un espace de Hilbert avec un produit scalaire explicite. Nous détaillons ce produit scalaire dans le cas des courbes et surfaces discrètes avec certains noyaux, ainsi que le gradient associé. Nous montrons enfin que malgré le choix de noyaux simples, nous ne perdons pas toutes les informations de courbures. Le chapitre 4 utilise cette nouvelle métrique comme terme d'attache aux données dans le cadre LDDMM. Nous présentons de nombreux appariements et estimations de formes moyennes avec des courbes ou des surfaces. L'objectif de ce chapitre est d'illustrer les différentes propriétés des cycles normaux pour l'analyse des déformations sur des exemples synthétiques et réels. / In this thesis, we develop a second order model for the representation of shapes (curves or surfaces) using the theory of normal cycles. The normal cycle of a shape is the current associated with its normal bundle. Introducing kernel metrics on normal cycles, we obtain a dissimilarity measure between shapes which takes into account curvature. This measure is used as a data attachment term for a purpose of registration and shape analysis by deformations. Chapter 1 is a review of the field of shape analysis. We focus on the setting of the theoretical and numerical model of the Large Deformation Diffeomorphic Metric Mapping(LDDMM).Chapter 2 focuses on the representation of shapes with normal cycles in a unified framework that encompasses both the continuous and the discrete shapes. We specify to what extend this representation encodes curvature information. Finally, we show the link between the normal cycle of a shape and its varifold. In chapter 3, we introduce the kernel metrics, so that we can consider normal cycles in a Hilbert space with an explicit scalar product. We detail this scalar product for discrete curves and surfaces with some kernels, as well as the associated gradient. We show that even with simple kernels, we do not get rid of all the curvature informations. The chapter 4 introduces this new metric as a data attachment term in the framework of LDDMM. We present numerous registrations and mean shape estimation for curves and surfaces. The aim of this chapter is to illustrate the different properties of normal cycles for the deformations analysis on synthetic and real examples.

Page generated in 0.5236 seconds