Spelling suggestions: "subject:"computational cost"" "subject:"eomputational cost""
21 |
Development of Neural Networks Using Deterministic TransformsGrau Jurado, Pol January 2021 (has links)
Deep neural networks have been a leading research topic within the machine learning field for the past few years. The introduction of graphical processing units (GPUs) and hardware advances made possible the training of deep neural networks. Previously the training procedure was impossible due to the huge amount of training samples required. The new trained introduced architectures have outperformed the classical methods in different classification and regression problems. With the introduction of 5G technology, related to low-latency and online applications, the research on decreasing the computational cost of deep learning architectures while maintaining state-of-art performance has gained huge interest. This thesis focuses on the use of Self Size-estimating Feedforward Network (SSFN), a feedforward multilayer network. SSFN presents low complexity on the training procedure due to a random matrix instance used in its weights. Its weight matrices are trained using a layer-wise convex optimization approach (a supervised training) combined with a random matrix instance (an unsupervised training). The use of deterministic transforms is explored to replace random matrix instances on the SSFN weight matrices. The use of deterministic transforms automatically reduces the computational complexity, as its structure allows to compute them by fast algorithms. Several deterministic transforms such as discrete cosine transform, Hadamard transform and wavelet transform, among others, are investigated. To this end, two methods based on features’ statistical parameters are developed. The proposed methods are implemented on each layer to decide the deterministic transform to use. The effectiveness of the proposed approach is illustrated by SSFN for object classification tasks using several benchmark datasets. The results show a proper performance, similar to the original SSFN, and also consistency across the different datasets. Therefore, the possibility of introducing deterministic transformations in machine learning research is demonstrated. / Under de senaste åren har djupa neurala nätverk varit det huvudsakliga forskningsområdet inom maskininlärning. Införandet av grafiska processorenheter (GPU:er) och hårdvaruutveckling möjliggjorde träning av djupa neurala nätverk. Tidigare var träningsförfarandet omöjligt på grund av den enorma mängd datapunkter som krävs. De nya tränade arkitekturerna har överträffat de klassiska metoderna i olika klassificerings- och regressionsproblem. Med introduktionen av 5G-teknik, som hör samman med låg fördröjning och onlineapplikationer, har forskning om att minska beräkningskostnaderna för djupinlärningsarkitekturer utan att tappa prestandan, fått ökat intresset. Denna avhandling fokuserar på användningen av Self Size Estimating Feedforward Network (SSFN), ett feedforward multilayer-nätverk. SSFN har låg komplexitet i träningsproceduren på grund av en slumpmässig matrisinstans som används i dess vikter. Dess viktmatriser tränas med hjälp av en lagervis konvex optimeringsstrategi (en övervakad träning) i kombination med en slumpmässig matrisinstans (en oövervakad träning). Användningen av deterministiska transformationer undersöks för att ersätta slumpmässiga matrisinstanser på SSFN-viktmatriserna. Användningen av deterministiska transformationer ger automatiskt en minskning av beräkningskomplexiteten, eftersom dess struktur gör det möjligt att beräkna dem med snabba algoritmer. Flera deterministiska transformationer som diskret cosinustransformation, Hadamardtransformation och wavelettransformation undersöks bland andra. För detta ändamål utvecklas två metoder som baseras på statistiska parametrar i indatans olika dimensioner. De föreslagna metoderna implementeras på varje lager för att bestämma den deterministiska transform som ska användas. Effektiviteten av det föreslagna tillvägagångssättet illustreras med SSFN för objektklassificering med hjälp av flera dataset. Resultatet visar ett korrekt beteende, likt den ursprungliga SSFN, och konsistenta resultat över de olika dataseten. Därmed demonstreras möjligheten att införa deterministiska transformationer i maskininlärningsforskning.
|
22 |
Data-driven fault diagnosis for PEMFC systemsLi, Zhongliang 16 September 2014 (has links)
Cette thèse est consacrée à l'étude de diagnostic de pannes pour les systèmes pile à combustible de type PEMFC. Le but est d'améliorer la fiabilité et la durabilité de la membrane électrolyte polymère afin de promouvoir la commercialisation de la technologie des piles à combustible. Les approches explorées dans cette thèse sont celles du diagnostic guidé par les données. Les techniques basées sur la reconnaissance de forme sont les plus utilisées. Dans ce travail, les variables considérées sont les tensions des cellules. Les résultats établis dans le cadre de la thèse peuvent être regroupés en trois contributions principales.La première contribution est constituée d'une étude comparative. Plus précisément, plusieurs méthodes sont explorées puis comparées en vue de déterminer une stratégie précise et offrant un coût de calcul optimal.La deuxième contribution concerne le diagnostic online sans connaissance complète des défauts au préalable. Il s'agit d'une technique adaptative qui permet d'appréhender l'apparition de nouveaux types de défauts. Cette technique est fondée sur la méthodologie SSM-SVM et les règles de détection et de localisation ont été améliorées pour répondre au problème du diagnostic en temps réel.La troisième contribution est obtenue à partir méthodologie fondée sur l'utilisation partielle de modèles dynamiques. Le principe de détection et localisation de défauts est fondé sur des techniques d'identification et sur la génération de résidus directement à partir des données d'exploitation.Toutes les stratégies proposées dans le cadre de la thèse ont été testées à travers des données expérimentales et validées sur un système embarqué. / Aiming at improving the reliability and durability of Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems and promote the commercialization of fuel cell technologies, this thesis work is dedicated to the fault diagnosis study for PEMFC systems. Data-driven fault diagnosis is the main focus in this thesis. As a main branch of data-driven fault diagnosis, the methods based on pattern classification techniques are firstly studied. Taking individual fuel cell voltages as original diagnosis variables, several representative methodologies are investigated and compared from the perspective of online implementation.Specific to the defects of conventional classification based diagnosis methods, a novel diagnosis strategy is proposed. A new classifier named Sphere-Shaped Multi-class Support Vector Machine (SSM-SVM) and modified diagnostic rules are utilized to realize the novel fault recognition. While an incremental learning method is extended to achieve the online adaptation.Apart from the classification based diagnosis approach, a so-called partial model-based data-driven approach is introduced to handle PEMFC diagnosis in dynamic processes. With the aid of a subspace identification method (SIM), the model-based residual generation is designed directly from the normal and dynamic operating data. Then, fault detection and isolation are further realized by evaluating the generated residuals.The proposed diagnosis strategies have been verified using the experimental data which cover a set of representative faults and different PEMFC stacks. The preliminary online implementation results with an embedded system are also supplied.
|
Page generated in 0.082 seconds