• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 8
  • 8
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of water damage on asphalt concrete mixtures using the environmental conditioning system

Al-Joaib, Ali Abdulla 28 May 1993 (has links)
Asphalt concrete pavement is subjected to several damaging actions from traffic loads, water (from precipitation and/or groundwater sources), and temperature. The durability of the asphalt-aggregate mixture, its ability to withstand these damaging actions for long periods, is a very important engineering property. While the durability of the asphalt-aggregates mixture depends on several factors such as the mixture's properties, construction methods, traffic loads and environmental conditions, they have to be evaluated to predict their field performance. Based on mixture evaluations, the mixtures that fail the test would have to be modified by additives or by changing the materials. The first objective of this thesis was to evaluate asphalt-aggregate mixtures for water damage using the Environmental Conditioning System (ECS), and rank the asphalt and aggregate types based on water sensitivity. The second objective was to relate the ECS ranking of the asphalt and aggregate types to Oregon State University (OSU) and University of Nottingham, UK (SWK/UN) wheel tracking test results, and to Net Adsorption Test (NAT) results. The third objective was to evaluate open-graded mixtures and rubber modified mixtures for water sensitivity using the ECS. The ECS test results indicate that performance ranking of mixtures by asphalt type or aggregate type alone cannot be made for the ECS test results due to the significant interaction between asphalt and aggregate. Water sensitivity in the ECS is significant for combinations of asphalt and aggregate. The ECS test results have shown that ECS performance ranking after one cycle is not statistically significant and does not correlate with ranking after three cycles. The results show that the ECS test program has similar aggregate rankings to those of the NAT and SWK/UN test program, while good agreement exists between SWK/UN wheel tracking results and the NAT test program results. However, poor agreement exists between the OSU wheel tracking results and those of the other two tests. Poor or very little agreement exists among the wheel tracking test results, ECS, and NAT test results in terms of asphalt type rankings. When considering the comparisons of materials ranking by different test procedures, one must keep in mind that the mechanisms leading to varying "performance" are not the same. The testing reported herein was aimed at measuring water sensitivity, but all the tests do not do so directly. The NAT procedure addresses only the potential for stripping (adhesion) and is not capable of evaluating cohesion loss. The other tests (ECS, OSU and SWK/UN wheel tracking) included all the mechanisms simultaneously, and these provided a gross effect without clearly separating the cause of failure in each case. Open-graded mixtures used by Oregon Department of Transportation (ODOT) performed well in the ECS in terms of water sensitivity. In the ECS evaluation, six mixtures passed the criteria of 75 % established for Indirect Retained Strength (IRS) test by ODOT, and one mixture was marginal. However, only one mixture passed the IRS evaluation, and another mixture was marginal. This confirms that the IRS test is a very severe test and is not suitable for water sensitivity evaluation of open-graded mixtures. Finally, the IRS test evaluation would suggest that these mixtures would fail prematurely after construction, but all of these mixtures have been used in projects which have been in service for more than three years with no visible signs of distress, or failures. / Graduation date: 1994
2

Evaluation of Georgia's high performance concerete bridge

Slapkus, Adam 08 1900 (has links)
No description available.
3

Analysis of conventionally reinforced concrete deck girder bridges for shear

Potisuk, Tanarat 25 August 2004 (has links)
Large numbers of 1950's vintage conventionally reinforced concrete (CRC) bridges remain in-service in the national bridge inventory. Many of these bridges are lightly reinforced for shear. Evaluation of these bridges to prevent unnecessary and costly repairs requires refined analytical techniques. This dissertation presents finite element (FE) modeling and comparisons of various analytical methods for predicting capacity of CRC girders typical of reinforced concrete deck girder (RCDG) bridges. Analyses included bridge-system load distribution, member capacity prediction, and consideration of corrosion damage for strength deterioration. Two in-service RCDG bridges were inspected and instrumented to measure response under known load configurations. Load distribution was developed for the bridges based on the field data. Comparisons with AASHTO factors indicated the design factors for load distribution are conservative. Load distribution of the tested bridges was numerically obtained using FE analysis. The comparisons between predicted results and field-test data indicated the elastic FE analysis can be used for modeling of cracked RCDG bridges to predict load distribution factors for more accurate bridge evaluation. Analyses were performed for a large set of full-size RCDG, designed to reflect 1950's vintage details, and tested using various loading configurations. Four different analysis methods were used to predict the capacity of the specimens considering details of various stirrup spacing, debonded stirrups, flexural-bar cutoff, anchorage of flexural reinforcing, and moving supports. Nonlinear FE analyses were performed to predict behavior of two groups of experimental reinforced concrete (RC) specimens. Two different span-to-depth ratios were included: 2.0 and approximately 3.0. Concrete confinement effects were included in the material modeling. A quasi-displacement control technique was developed to reduce solution times. The FE predicted results correlated well with the experimental data. FE modeling techniques were developed to isolate different contributions of corrosion damage to structural response of experimental RC beams designed to produce diagonal-tension failures. Corrosion-damage parameters included concrete cover spalling; uniform stirrup cross-sectional loss; local stirrup cross-sectional loss due to pitting; and debonding of corrosion-damaged stirrups from the concrete. FE analyses were performed including both individual and combined damages. The FE results matched experimental results well and quantitatively estimated capacity reduction of the experimental specimens. / Graduation date: 2005 / Best scan available.
4

The effect of early opening to traffic on fatigue life of concrete pavement

Suh, Chul 28 August 2008 (has links)
Not available / text
5

Behavior of Reinforced Concrete Beams Retrofitted in Flexure Using CFRP-NSM Technique

Al-Obaidi, Salam 21 May 2015 (has links)
A variety of retrofitting methods are used to upgrade existing structures. For example, steel plates and Fiber Reinforced Polymer (FRP) jackets are externally bonded to members to increase their capacity in flexure and shear. However, due to the issue of corrosion these strengthening systems may lose their efficiency with time. FRP materials have been used to strengthen many structural components of different shapes and types. FRP jackets, FRP Strips, and FRP rods have commonly been used to rehabilitate existing structural components. The many advantages of using FRP as strengthening materials have made this material an attractive alternative: advantages such as lightweight, high strength, and ease of setting up. Among the many applications using FRP, Near Surface Mounted -- Fiber Reinforced polymer (NSM-FRP) is a promising technique used to strengthen concrete members. However, de-bonding issues have to be overcome to make this technique efficient and reliable. The NSM-FRP technique consists of making a groove along the surface of the concrete member to be retrofitted with depth less than the cover of the member. After cleaning the groove, epoxy paste is used to fill two-thirds of the groove's depth. The FRP element is then mounted in the groove. Finally, the groove is filled with epoxy and the excessive epoxy is leveled with surface of the concrete. This technique makes the FRP material completely covered by epoxy in the cover of the concrete. This method can be used for strengthening both the positive and negative moment regions of girders and slabs. Groove size, paste, concrete, and rods properties are the main variables that control the efficiency of the NSM-FRP rods. The main objective of this research project is to determine the behavior of reinforced concrete beams that are strengthened with NSM-CFRP reinforcement bars. In this research project, the bond characteristics of NSM-CFRP reinforcement bars are first determined from pullout tests. Then, NSM-CFRP rods are installed in reinforced concrete beams and the beams are tested. Loads, strains, and deflections are measured and theoretical and measured capacities are compared. Finally, the reliability and efficiency of using NSM-CFRP rods technique in retrofitting existing structures is observed.
6

Laboratory evaluation of asphalt-portland cement concrete composite

Gouru, Harinath 23 December 2009 (has links)
Asphalt-Portland Cement Concrete Composite (APCCC) is a hot-mix asphalt with air voids in the range of 25 to 30 percent which is later filled with resin modified cement grout. The resin modified cement grout consists of portland cement, fly ash, sand, water, and prosalvia (PL7) additive. The objective of the research was primarily to evaluate the asphalt-portland cement concrete composite under laboratory conditions. Asphalt-portland cement concrete composite specimens were prepared using the Marshall procedure. The physical and durability properties of APCCC were evaluated at one, three, seven, and 28 days of curing. The evaluated physical properties include stability, indirect tensile strength, compressive strength, and resilient modulus, while the evaluated durability properties include water sensitivity, freeze-thaw and chloride intrusion resistance. Specimens were also tested for different moist curing levels to evaluate the optimum moist curing period. Three moist curing periods were evaluated: no-moist curing, one-day moist curing, and three-day moist curing. The test results were compared with those of SM-5 hot-mix asphalt (a Virginia surface mix); results of chloride intrusion resistance were compared with those of portland cement concrete specimens exposed to similar conditions. The study concluded that asphalt-portland cement concrete composite is an effective alternative technique to be used as an overlay on bridge decks especially with preformed membranes, due to its high strength, durability, and lower air void content. / Master of Science
7

Nonlinear resonance methods for assessing ASR susceptibility during concrete prism testing (CPT)

Lesnicki, Krzysztof Jacek 17 May 2011 (has links)
This research focuses on the characterization of damage accumulation in concrete specimens. Specifically, a nonlinear vibration technique is used to characterize the damage introduced by ongoing alkali-silica reactions (ASR). The nonlinear resonance testing consists of an analysis of the frequency response of concrete specimens subjected to impact loading. ASR introduces a third gel like phase, which can be expansive in the presence of moisture. The result of ASR is the formation of microcracks and debonding between aggregate and cement phases. Collectively, these changes act to increase the specimens' nonlinearity. As a result, it is found that the concrete samples exhibit nonlinear behavior; mainly a decrease in resonance frequency with an increasing level of excitation strain. The relationship between the amplitude of the response and the amount of frequency shift is used as a parameter to describe the nonlinearity of the specimen. The specimens used in this research are of varying reactivity with respect to ASR, which is induced in accordance with ASTM C 1293. The level of nonlinearity is used as a measure of damage caused by the progress of ASR throughout the one year test duration. These nonlinear resonance results are compared to the traditional measures of expansion described in the standard. The robustness and repeatability of the proposed technique is also investigated by repeated testing of samples assumed to be at a specific damage state. Finally, a petrographic staining technique is used to complement nonlinearity measurements and to further gain understanding of ASR. The results of this study show that the proposed nonlinear resonance methods are very sensitive to microstructural changes and have great potential for quantitative damage assessment in concrete.
8

Accelerated corrosion testing, evaluation and durability design of bonded post-tensioned concrete tendons

Salas Pereira, Rubén Mario, 1968- 25 July 2011 (has links)
Not available / text

Page generated in 0.0907 seconds