Spelling suggestions: "subject:"concurrency."" "subject:"oncurrency.""
251 |
Static Partial Order Reduction for Probabilistic Concurrent SystemsFernández-Díaz, Álvaro, Baier, Christel, Benac-Earle, Clara, Fredlund, Lars-Åke January 2012 (has links)
Sound criteria for partial order reduction for probabilistic concurrent systems have been presented in the literature. Their realization relies on a depth-first search-based approach for generating the reduced model. The drawback of this dynamic approach is that it can hardly be combined with other techniques to tackle the state explosion problem, e.g., symbolic probabilistic model checking with multi-terminal variants of binary decision diagrams. Following the approach presented by Kurshan et al. for non-probabilistic systems, we study partial order reduction techniques for probabilistic concurrent systems that can be realized by a static analysis. The idea is to inject the reduction criteria into the control flow graphs of the processes of the system to be analyzed. We provide the theoretical foundations of static partial order reduction for probabilistic concurrent systems and present algorithms to realize them. Finally, we report on some experimental results.
|
252 |
High-performant, Replicated, Queue-oriented Transaction Processing Systems on Modern Computing InfrastructuresThamir Qadah (11132985) 27 July 2021 (has links)
With the shifting landscape of computing hardware architectures and the emergence of new computing environments (e.g., large main-memory systems, hundreds of CPUs, distributed and virtualized cloud-based resources), state-of-the-art designs of transaction processing systems that rely on conventional wisdom suffer from lost performance optimization opportunities. This dissertation challenges conventional wisdom to rethink the design and implementation of transaction processing systems for modern computing environments.<div><br></div><div>We start by tackling the vertical hardware scaling challenge, and propose a deterministic approach to transaction processing on emerging multi-sockets, many-core, shared memory architecture to harness its unprecedented available parallelism. Our proposed priority-based queue-oriented transaction processing architecture eliminates the transaction contention footprint and uses speculative execution to improve the throughput of centralized deterministic transaction processing systems. We build QueCC and demonstrate up to two orders of magnitude better performance over the state-of-the-art.<br></div><div><br></div><div>We further tackle the horizontal scaling challenge and propose a distributed queue-oriented transaction processing engine that relies on queue-oriented communication to eliminate the traditional overhead of commitment protocols for multi-partition transactions. We build Q-Store, and demonstrate up to 22x improvement in system throughput over the state-of-the-art deterministic transaction processing systems.<br></div><div><br></div><div>Finally, we propose a generalized framework for designing distributed and replicated deterministic transaction processing systems. We introduce the concept of speculative replication to hide the latency overhead of replication. We prototype the speculative replication protocol in QR-Store and perform an extensive experimental evaluation using standard benchmarks. We show that QR-Store can achieve a throughput of 1.9 million replicated transactions per second in under 200 milliseconds and a replication overhead of 8%-25%compared to non-replicated configurations.<br></div>
|
253 |
CyberWater: An open framework for data and model integrationRanran Chen (18423792) 03 June 2024 (has links)
<p dir="ltr">Workflow management systems (WMSs) are commonly used to organize/automate sequences of tasks as workflows to accelerate scientific discoveries. During complex workflow modeling, a local interactive workflow environment is desirable, as users usually rely on their rich, local environments for fast prototyping and refinements before they consider using more powerful computing resources.</p><p dir="ltr">This dissertation delves into the innovative development of the CyberWater framework based on Workflow Management Systems (WMSs). Against the backdrop of data-intensive and complex models, CyberWater exemplifies the transition of intricate data into insightful and actionable knowledge and introduces the nuanced architecture of CyberWater, particularly focusing on its adaptation and enhancement from the VisTrails system. It highlights the significance of control and data flow mechanisms and the introduction of new data formats for effective data processing within the CyberWater framework.</p><p dir="ltr">This study presents an in-depth analysis of the design and implementation of Generic Model Agent Toolkits. The discussion centers on template-based component mechanisms and the integration with popular platforms, while emphasizing the toolkit’s ability to facilitate on-demand access to High-Performance Computing resources for large-scale data handling. Besides, the development of an asynchronously controlled workflow within CyberWater is also explored. This innovative approach enhances computational performance by optimizing pipeline-level parallelism and allows for on-demand submissions of HPC jobs, significantly improving the efficiency of data processing.</p><p dir="ltr">A comprehensive methodology for model-driven development and Python code integration within the CyberWater framework and innovative applications of GPT models for automated data retrieval are introduced in this research as well. It examines the implementation of Git Actions for system automation in data retrieval processes and discusses the transformation of raw data into a compatible format, enhancing the adaptability and reliability of the data retrieval component in the adaptive generic model agent toolkit component.</p><p dir="ltr">For the development and maintenance of software within the CyberWater framework, the use of tools like GitHub for version control and outlining automated processes has been applied for software updates and error reporting. Except that, the user data collection also emphasizes the role of the CyberWater Server in these processes.</p><p dir="ltr">In conclusion, this dissertation presents our comprehensive work on the CyberWater framework's advancements, setting new standards in scientific workflow management and demonstrating how technological innovation can significantly elevate the process of scientific discovery.</p>
|
254 |
Malleability, obliviousness and aspects for broadcast service attachmentHarrison, William January 2010 (has links)
An important characteristic of Service-Oriented Architectures is that clients do not depend on the service implementation's internal assignment of methods to objects. It is perhaps the most important technical characteristic that differentiates them from more common object-oriented solutions. This characteristic makes clients and services malleable, allowing them to be rearranged at run-time as circumstances change. That improvement in malleability is impaired by requiring clients to direct service requests to particular services. Ideally, the clients are totally oblivious to the service structure, as they are to aspect structure in aspect-oriented software. Removing knowledge of a method implementation's location, whether in object or service, requires re-defining the boundary line between programming language and middleware, making clearer specification of dependence on protocols, and bringing the transaction-like concept of failure scopes into language semantics as well. This paper explores consequences and advantages of a transition from object-request brokering to service-request brokering, including the potential to improve our ability to write more parallel software.
|
Page generated in 0.0355 seconds