Spelling suggestions: "subject:"condensedmatter fhysics"" "subject:"condensedmatter ephysics""
551 |
Manipulation of thin metal film growth on weakly-interacting substrates using gaseous surfactantsKonpan, Martin January 2019 (has links)
Thin films are structures with thicknesses ranging from the atomic scale to the mesoscale that are used to alter the properties of a surface and/or serve as functional layers in devices. Thin metal films deposited from the vapor phase on weakly-interacting substrates, including oxides (TiO2, ZnO, SiO2 etc.) and two-dimensional (2D) materials (graphene, MoS2, etc), are relevant for a wide array of technological applications, such as optical devices, nanoelectronic components, sensors, and catalytic devices. The weak interaction between deposit and surface in these film/substrate combinations leads to three-dimensional (3D) metal-layer morphological evolution in an uncontrolled manner; which often constitutes an important challenge toward integrating metal layers in key enabling devices. Thus there is a need for efficient growth manipulation strategies, such that metal films with controlled 3D and 2D microstructures and morphologies can be synthesized. Surfactants, i.e., minority metal, non-metal, and gaseous species which are deployed to the growing surface together with film-forming species, have been shown to enable growth manipulation in a multitude of homo- and heteroepitaxial metal/metal and semiconductor/semiconductor systems. This work explores the viability of N2 and O2 surfactants to manipulate growth in model weakly-interacting Ag/SiO2 and Au/SiO2 systems. Au and Ag are deposited by direct current (DC) magnetron sputtering on Si substrates covered with a 500 nm thick thermally grown SiO2 layer. Gaseous N2 and O2 surfactants are introduced to the sputtering atmosphere either continuously during deposition or at well-defined points during growth, such that specific film-formation stages as targeted. Using a combination of in situ/real-time diagnostic tools and ex situ characterization techniques, it is shown that O2 and N2 cause Ag and Au, respectively, to grow flatter, i.e., 2D growth morphology is promoted. Moreover, by deploying surfactants selectively during early or late film growth stages and studying their effect on film morphological evolution, it is concluded that N2 and O2 effectively suppress the rate of island coalescence promoting formation of flatter films. The overall results of this study are the first step toward establishing an atomic-scale understanding of the effect of surfactants on morphological evolution of metal films on weakly-interacting substrates. The knowledge generated herein is relevant for designing growth manipulation strategies in a wide range of technologically important film/substrate systems.
|
552 |
First-principles modelling of materials: from polythiophene to phosphoreneZiletti, Angelo 22 February 2016 (has links)
As a result of the computing power provided by the current technology, computational methods now play an important role in modeling and designing materials at the nanoscale.
The focus of this dissertation is two-fold: first, new computational methods to model nanoscale transport are introduced, then state-of-the-art tools based on density functional theory are employed to explore the properties of phosphorene, a novel low dimensional material with great potential for applications in nanotechnology.
A Wannier function description of the electron density is combined with a generalized Slater-Koster interpolation technique, enabling the introduction of a new computational method for constructing first-principles model Hamiltonians for electron and hole transport that maintain the density functional theory accuracy at a fraction of the computational cost. As a proof of concept, this new approach is applied to model polythiophene, a polymer ubiquitous in organic photovoltaic devices.
A new low dimensional material, phosphorene - a single layer of black phosphorous - the phosphorous analogue of graphene was first isolated in early 2014 and has attracted considerable attention. It is a semiconductor with a sizable band gap, which makes it a perfect candidate for ultrathin transistors. Multi-layer phosphorene transistors have already achieved the highest hole mobility of any two-dimensional material apart from graphene.
Phosphorene is prone to oxidation, which can lead to degradation of electrical properties, and eventually structural breakdown. The calculations reported here are some of the first to explore this oxidation and reveal that different types of oxygen defects are readily introduced in the phosphorene lattice, creating electron traps in some situations. These traps are responsible for the non-ambipolar behavior observed by experimental collaborators in air-exposed few-layer black phosphorus devices.
Calculation results predict that air exposure of phosphorene creates a new family of two-dimensional oxides, which has been later confirmed by X-ray photoemission measurements. These oxides can form protective coatings for phosphorene and have interesting tunable electronic properties.
Finally, Wannier function interpolation has been used to demonstrate that a saddle-point van Hove singularity is present near the phosphorene Fermi energy, as observed in some layered cuprate high temperature superconductors; this leads to an intriguing strain-induced ferromagnetic instability.
|
553 |
Dissociação da molécula de água em superfícies de silício: um estudo teórico / Dissociation of water molecule on silicon surfects: a theoretical studySousa, Regina Lélis de 03 March 2010 (has links)
O silício é o material-base para a indústria de microeletrônica e tem acompanhado a evolução para a nanoeletrônica. Em várias aplicações é importante o processo de química molhada que prevê a presença de moléculas de água na superfície do semicondutor. Todavia, muito pouco ainda é conhecido, teórica e experimentalmente, sobre os mecanismos e as estruturas resultantes da reação da molécula de H2O sobre Si. Aqui, nós apresentamos nosso estudo da dissociação de uma molécula de água sobre as superfícies Si(100)(2x1) (superfície limpa) e Si(100)(2x1):H superfcie monohidrogenada). Nossos resultados foram obtidos com a Teoria do Funcional da Densidade (DFT), enquanto os caminhos de menor energia para a decomposição da molécula sobre a superfície foram obtidos com a metodologia denominada CI-NEB (Climbing Image - Nudging Elastic Band). Nossos resultados mostraram que a dissociação da molécula de água sobre a superfície limpa é independente do sítio de ataque à superf´cie e esta interação ocorre de maneira correlacionada. O produto HSiSiOH desta reação é estável, e a posterior decomposição ocorre via energia térmica. Neste caso, nós mostramos que a transferência do átomo de oxigênio para o dímero é energética e cineticamente favorável em relação à oxidação de sítios subsuperficiais. A superfície monohidrogenda mostra-se muito resistente ao ataque oxidativo. Constatamos que alguns processos oxidativos tem dependêencia com o sítio de ataque, enquanto outros são indiferentes se a interação ocorre em regiões de vale ou sobre a fileira de dímeros. Nossos resultados evidenciam que a rota de ataque sugerida pelos experimentais nao se mostrou cineticamente viável. Assim, nós propomos duas novas rotas oxidativas, uma relacionada à oxidação do dímero e outra de sítio de subsuperfície. Nós provamos que estas duas novas possibilidades são cinética e energéticamente viáveis. Finalmente, apresentamos uma análise das modificações do perfil de corrente de tunelamento (STM - Scanning Tunneling Microscopy) provocadas por estes defeitos. Deste modo, n´os esperamos que este trabalho possa ser uma motivação para a comprovação de nossos resultados. / Silicon is the basic material for microeletronics industry, and for the recent developments in nano eletronics. In many applications, wet chemistry processing is important that is, with the presence of water molecules on the semiconductor surface. However, the reaction mechanism for the H2O molecule with Si, and the resulting structures, are still object of debate, from both theoretical and experimental points of view. Here, we present a detailed study of the dissociation of one water molecule on the surfaces Si (100) (2x1) (clean surface) and Si (100) (2x1): H ) monohydride, covering from the reaction evolution, to the characterization of the final surface. To do that, we use methodologies based on Density Functional Theory the reaction pathways for decomposition of the water molecule on the surface have been carried out with CI-NEB (climbing image nudging elastic band), and we used the Tersoff-Hamann model for surface characterization. Our results show that the water molecule dissociation on the clean surface is independent of the site of attack. The product of this reaction, H-Si-Si-OH unit, is stable and its subsequent decomposition occurs through thermal energy. We also find that the insertion of the oxygen atom a Si surface dimmer is energetically and kinetically favorable compared to absorption in the back-bond (subsurface) sites. Although hydrogenation cannot prevent oxidation of the surface, we can say that the passivation processes are efficient, since the monohydride surface is more resistant to attack by oxygen. In contrast with the clean surface, for this case, some oxidative process have dependency on the site of attack, while others are indifferent whether the interaction occurs in the valley or over the dimmer rows. Our results indicate that the oxidation route suggested by earlier experimental works is not favored. In this way, we propose two new oxidation routes, once related to chemisorption of the oxygen atom on the Si-Si dimmer bond, and another related to the absorption on the back bond, with simultaneous ejection of one H2 molecule. Analysis of energy barriers showed that these two new possibilities are both kinetically and energetically viable. We finally present analyses of the profiles of tunneling current, predicted by STM (Scanning Tunneling Microscopy) for oxygen incorporation in all studied structures. We hope to have contribuited to the understanding of the oxidation processes, and at the same time to motivate new experimental investigations
|
554 |
Angle-Resolved Photoemission Studies on Ruthenates and Iron-Based SuperconductorsNeupane, Madhab January 2010 (has links)
Thesis advisor: Ziqiang Wang / Angle-resloved photoemission spectroscopy (ARPES) is a powerful technique to study the electronic structure in solids. Its unique ability of resolving the energy and momentum information of electrons inside a solid provides an essential tool in measuring the electronic structure of solids. ARPES has made great contributions in the understanding of correlated system such as high-T<sub>c</sub> superconductors and ruthenates. The Metal-insulator transition is a fundamental problem in condensed matter physics. The calcium substituted strontium ruthenate, Ca<sub>2-x</sub>Sr<sub>x</sub>RuO<sub>4</sub>, provides a good platform to study the metal-insulator transition in multi-orbital systems. This system has a complex phase diagram that evolves from a <italic>p</italic>-wave superconductor to a Mott insulator. One of important projects of this thesis focuses on Ca<sub>2-x</sub>Sr<sub>x</sub>RuO<sub>4</sub> The growing evidence for coexistence of itinerant electrons and local moments in transition metals with nearly degenerate d orbitals suggests that one or more electron orbitals undergo a Mott transition while the others remain itinerant. We have observed a novel orbital selective Mott transition (OSMT) in Ca<sub>1.8</sub>Sr<sub>0.2</sub>RuO<sub>4</sub> by ARPES. While we observed two sets of dispersing bands and Fermi surfaces (FSs) associated with the doubly-degenerate d<sub>yz</sub> and d<sub>zx</sub> orbitals, the Fermi surface associated with the d<sub>xy</sub> orbital which has a wider bandwidth is missing as a consequence of selective Mott localization. Our theoretical calculations have demonstrated that this unusual OSMT is mainly driven by the combined effects of inter-orbital carrier transfer, superlattice potentials and orbital degeneracy, whereas the bandwidth difference plays a less important role. Another important project of this thesis focuses on the recently discovered iron-pnictides superconductors. The idea of inter-FS scattering associated with the near-nesting condition has been proposed to explain the superconductivity in the pnictides. The near-nesting condition varies upon the carrier doping which shifts the chemical potential. We have performed a systematic photoemission study of the chemical potential shift as a function of doping in a pnictide system based on BaFe<sub>2</sub>As<sub>2</sub>. The experimentally determined chemical potential shift is consistent with the prediction of a rigid band shift picture by the renormalized first-principle band calculations. This leads to an electron-hole asymmetry (EHA) due to different Fermi velocities for different FS sheets, which can be calculated from the Lindhard function of susceptibility. This built-in EHA from the band structure, which is fully consistent with the experimental phase diagram, strongly supports that inter-FS scattering over the near-nesting Fermi surfaces plays a vital role in the superconductivity of the iron pnictides. / Thesis (PhD) — Boston College, 2010. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
|
555 |
The implications of geometric frustration and orbital degeneracies on the evolution of magnetism in Na4Ir3O8 and α-NaMnO2Dally, Rebecca Lynn January 2018 (has links)
Thesis advisor: Stephen D. Wilson / Spin-orbit intertwined order gives rise to many novel phenomena with a broad phase space spanned by the competing energy scales within a system. This dissertation synthesized and studied two such systems demonstrating different manifestations of spin-orbit interactions, originating from orbital degeneracy effects, on geometrically frustrated magnetic lattices. Firstly, strong spin-orbit coupling in the hyperkagome lattice, Na4Ir3O8, and secondly, the layered material, α-NaMnO2, where single-ion anisotropy and a cooperative Jahn-Teller distortion drive magnetism to the quasi-1D limit. The magnetic ground state of the Jeff = 1/2 spin-liquid candidate, Na4Ir3O8, is explored via combined bulk magnetization, muon spin relaxation, and neutron scattering measurements. A short-range, frozen, state comprised of quasi-static moments develops below a characteristic temperature of TF = 6 K, revealing an inhomogeneous distribution of spins occupying the entirety of the sample volume. Quasi-static, short-range, spin correlations persist until at least 20 mK and differ substantially from the nominally dynamic response of a quantum spin liquid. Much of this dissertation focuses on the second spin-orbit intertwined system, α-NaMnO2, where a cooperative Jahn-Teller distortion of the MnO6 octahedra arising from an orbital degeneracy in the Mn3+ cations directly affects the electronic (ferro-orbital) and magnetic (antiferromagnetic) order, which results in an intriguing study of low-dimensional magnetism. Intricacies of the structure, static magnetic order, and magnon dynamics are presented, which heavily relied on neutron scattering techniques. In particular, a longitudinally polarized bound magnon mode is characterized through the use of polarized neutron scattering. / Thesis (PhD) — Boston College, 2018. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
|
556 |
Modelagem ab initio da interação proteína-carboidrato / Ab initio modeling of protein - carbohydrate interactionLima, Filipe Camargo Dalmatti Alves 20 August 2010 (has links)
A Frutalina é uma proteína tetramérica ligante de carboidratos obtida através de sementes Artocarpus incisa. Os interesses biomédicos da Frutalina estão em sua alta afnidade de ligação por carboidratos presentes em algumas células tumorais específicas. Até agora, nenhum estudo teórico computacional foi realizado para investigar as características de ligação da Frutalina. Neste trabalho, através de um estudo multidisciplinar, investigamos as propriedades de ligação e óticas da Frutalina com carboidratos. Utilizamos um modelo-corte teórico, considerando apenas o sítio ativo de ligação com o carboidrato construído com o auxílio de docking molecular e mecânica molecular clássica. As energias de ligação são obtidas através de uma abordagem quântica ab initio all electron, dentro da Teoria do Funcional da Densidade (DFT), no espaço recíproco que combina o método Projector Augmented Waves (PAW) e a dinâmica molecular de Car-Parrinello (CP). Uma metodologia Hartree-Fock (HF) semi-empírica é utilizada para obter as propriedades óticas. A investigação deste problema muito complexo pode ser dividido em seis etapas principais: a) estudamos as propriedades estruturais da proteína para avaliar a sua mobilidade e escolhemos um conjunto de dados de raios-X para descrever o sistema; b) aplicamos a técnica de docking molecular para ligar quatro carboidratos ( alfa-metil-D-galactose, beta-D-galactose, O1-metil-manose e alfa-metil-D-glucopiranose) na proteína; c) otimizamos a geometria do sistema lectina-carboidrato utilizando mecânica molecular clássica; d) criamos o modelo-corte ; e) investigamos as propriedades óticas utilizando HF; f) estudamos as propriedades eletrônicas do sistema proteína-carboidrato e calculamos energias de ligação através do cálculo DFT. O modelo aqui proposto, além de apresentar uma adequada concordância com dados experimentais, abre a possibilidade de investigar propriedades eletrônicas através de uma abordagem quântica estado da arte na área de estrutura eletrônica. / Frutalin is a tetrameric carbohydrate-binding protein obtained from breadfruit seeds. Biomedical interest on Frutalin comes from the high afinity exhibited by these molecules toward carbohydrates expressed by specific tumor cells. So far, no theoretical computational studies have been carried out to investigate the binding characteristics of frutalin, which is probably due to the large number of atoms that should be considered for in silicon calculations. We investigate the binding of frutalin and optical properties with specific carbohydrate molecules using a theoretical cutmodel considering only the carbohydrate binding site. This model has been constructed with the aid of molecular docking and classical molecular mechanics. We use the ab initio all electron reciprocal space Projector Augmented Waves (PAW) method and the Car-Parrinello scheme as embodied in the CP-PAW code to obtain the binding energies. To evaluate the optical properties, we employed the Hartree-Fock Semi-empirical ZINDO method from the Materials Studio 4.0 computational package. The investigation of this very complex problem can be divided into 6 main steps. Firstly, we study the structural properties of the protein to evaluate its mobility and we choose a x-ray data to describe reliably the system. In the second step, we performed molecular docking to link up four carbohydrates (alpha-methyl-D-galactoside, beta-D-galactoside, O1-methyl-mannose and methyl-alpha-D-glucopyranoside) in the protein. We optimize the geometry of the system lectin-carbohydrate using molecular mechanics in the third step. In the fourth step, we created the cutmodel based on the final geometries obtained in the previous step. In the fifth and sixth steps we investigate the quantum interaction of the protein with each carbohydrate. Our theoretical results are compared with available measurements in each step. The study of the interaction between the active binding site and carbohydrates allows us to demonstrate that our methodology is well suited to predict the electronic properties of the system.
|
557 |
Nano-patterning by ion bombardmentMokhtarzadeh, Mahsa 05 February 2019 (has links)
The bombardment of surfaces by ions can lead to the spontaneous formation of
nano-structures. Depending on the irradiation conditions, smoothening or roughening
mechanisms can be the leading order in pattern formation which can result in the
creation of dots, ripples or ultra-smoothening effects. Because ion bombardment is
already ubiquitous in industrial settings, and is relatively inexpensive compared to
other surface processing techniques, self-organized patterning by ion bombardment
could enable a simple, economical means of inducing well-defined nanoscale structures
in a variety of settings. Understanding the fundamental behavior of surfaces during
ion bombardment is therefore a vital goal; however, a complete understanding of
physical processes governing surface pattern formation has not been reached yet.
In order to address this issue, my thesis research has utilized three primary approaches.
First, I have done real-time non-coherent X-ray scattering experiments at
Cornell High Energy Synchrotron Source (CHESS) for studying kinetics of structure
formation of Silicon undergoing Ar⁺ bombardment over a range of wavenumbers 4-5
times larger than has previously been obtained. From our data, we were able to
extract values of the angle-dependent thickness of the amorphous layer that forms
under ion bombardment, the ion-enhanced fluidity within that film, the magnitude
of the stress being generated by the ion beam, and the strength of prompt atomic displacement mechanisms.
Second, to further deepen our knowledge of surface dynamics, I have performed
coherent X-ray studies of Ar⁺ bombardment of SiO₂ at the Advanced Photon Source
(APS) for investigating the dynamics more profoundly than can be done with traditional
time-resolved experiments. When using a focused ion beam, an inhomogeneous
ripple motion was generated, this phenomenon reflected as an oscillatory behavior in
the two-time and corresponding g₂(t) correlation functions. By fitting the oscillations
in the g₂(t) correlation function, we have determined the surface ripple velocity on
SiO₂ driven by Ar⁺ sputter erosion.
Finally, to support the results of coherent X-ray experiments, simulations of
growth models such as linear Kuramoto-Sivashinsky (KS) and Kardar-Parisi-Zhang
(KPZ) have been carried out in order to compare the simulated temporal correlation
functions of the scattered intensity with those obtained from the coherent x-ray
scattering experiments.
|
558 |
Propriedades estruturais e elásticas de fases lamelares: O efeito da composição da membrana / Structural and elastic properties of lamellar phases: The effect of membrane compositionGerbelli, Barbara Bianca 17 December 2012 (has links)
Neste trabalho, é apresentado um estudo sistemático de uma fase lamelar composta de lecitina á qual é incorporado um co-surfactante de uso comercial (Simulsol), que consiste de uma mistura de ácidos graxos etoxilados. Foi realizado um estudo estrutural, utilizando a técnica de espalhamento de raios X em baixo ângulo (SAXS) em amostras inseridas em capilares, variando a composição da membrana, desde 100% de lecitina até 100% de Simulsol, ao longo da linha de diluição, para cada composição. Os resultados experimentais de espalhamento foram analisados usando um método que permite o ajuste direto da intensidade de espalhamento e um procedimento de otimização que fornece o perfil de densidade eletrônica da bicamada. Com esse método de análise, além de parâmetros estruturais tais como, periodicidade lamelar e espessura da bicamada obtém-se o parâmetro de Caillé, que relaciona as constantes elásticas que caracterizam a flexibilidade do sistema lamelar. As propriedades termodinâmicas do sistema lamelar foram investigadas para duas composições de membrana, em experimentos onde o potencial químico da água é controlado. A combinação dos resultados obtidos nos estudos estruturais e termodinâmicos permitiu a determinação do módulo de compressibilidade da fase lamelar e da constante de rigidez da membrana. A incorporação do co-surfactante aumenta a contribuição de interações de natureza entrópica relacionada às flutuações da membrana, que resultam na estabilização da fase lamelar para distâncias de separação entre as membranas muito maiores do que as observadas no sistema lamelar composto apenas por lecitina. Para pequenas distâncias de separação entre as bicamadas, observa-se superposição de regiões polares de bicamadas vizinhas, que são acompanhadas de mudanças no comportamento do parâmetro de Caillé, e consequentemente no comportamento das constantes de compressibilidade e na constante de rigidez. No regime diluído, a incorporação de moléculas anfifílicas com apenas uma cadeia carbônica resulta na redução significativa da constante de rigidez da membrana de lecitina de ~ 20kBT para ~0,5kBT. / In this work we present a systematic study of structural properties of a lamelar phase composed of lecithin when a commercial cosurfactant(Simulsol) which is a mixture of etoxylated fatty acids. The study was carried out using small angle X ray scattering with samples encapsulated in glass capillaries, varying membrane composition from 100% of lecithin to 100% of Simulsol, through the dilution line, for each composition. The experimental results were analyzed using a method that fits directly the scattered intensity and, by means of an optimization procedure, gives the electronic density profile of the lipid bilayer. From the analysis of experimental data, in addition to the structural parameters, such as the lamellar period and membrane thickness,we obtain the Caillè parameter, which relates the elastic constants that characterizes the flexibility of the lamellar system. Thermodynamic properties of the lamellar system were also investigated, for two membrane compositions, by controlling the water chemical potential. The combination of results obtained in structural and thermodynamic studies allowed determination of the compressibility modulus of the lamellar phase and the membrane rigidity constant. The incorporation of co-surfactant to the membrane increases the contribution of entropic interactions arising from membrane fluctuations resulting in the stabilization of lamellar phase for larger membrane separation distances than observed for the lamellar system composed of lecithin only. For small membrane separation distances, a superposition of polar region of neighbor bilayers is observed, with related changes in the behavior of Caillè parameter, and consequently in the behavior of compressibility and membrane rigidity constants. In diluted regime, the incorporation of amphiphilic molecules with a single carbonic chain results in a significant reduction in lecithin membrane rigidity, from ~20kBT to ~ 0,5 kBT .
|
559 |
Sistemas porosos de zircônia e céria / Zirconia-Ceria Porous SystemsBacani, Rebeca 16 December 2009 (has links)
Neste trabalho foram desenvolvidas sínteses de ZrO2-x%CeO2, baseadas na preparação da sílica mesoporosa ordenada SBA-15, utilizando um molde de co-polímero tribloco Pluronic P-123, diversos precursores de zircônio e cério e diferentes métodos. Os métodos de síntese testados foram com: precursores a base de cloreto hidratado (com x=50, 70 e 90), precursores a base de cloreto anidro (x=50 e 90), precursores a base de nitrato (x=90), solução supersaturada de nitrato (x=90), do tipo híbrido com Zr, Ce e Si (com 10%mol de Si e x=90), paliçada de Si (com 10 e 30%mol de Si e x=90) e paliçada de Si com temperatura de síntese de 40°C (com 30%mol de Si e x=90). Visando obter paredes compostas por fase cristalina única e grande área supercial, para futuras aplicações em catálise. Os compósitos polímero/(zircônio-cério) sintetizados a partir de cloretos formam uma estrutura lamelar organizada, que se transforma num sistema poroso desordenado após a calcinação para a retirada do molde. O processo de decomposição/remoção do molde até 540°C produz mudanças de fase nos precursores a base dos metais utilizados, além das transformações morfológicas. Para uma concentração de 90% de CeO2 obtém-se um material poroso com paredes homogêneas de estrutura fcc e de maior estabilidade mecânica. Os valores de área supercial e volume de poros dependem fundamentalmente do método de preparação do material e independem da concentração de CeO2. Aumentos signicativos da área supercial (~100m²/g) e do volume de poros (~0,4cm³/g) são obtidos a partir da introdução de sílica nesses sistemas. Foram alcançados área supercial aproximadamente 6 vezes maior e tamanho de cristalito ~4 vezes superior à do material similar nanocristalino preparado por gel-combustão. Esses valores também são iguais aos reportados para os melhores materiais porosos a base de zircônia-céria, preparados por outros métodos, encontrados na literatura. / In this work synthesis of ZrO2-x%CeO2 were developed, based on the formation of ordered mesoporous silica SBA-15, using the triblock co-polymer Pluronic P-123 as template, different precursors of zirconium and cerium and dierent methods. The tested synthesis methods were with: hydrated chloride precursors (with x=50, 70 and 90), anhydrous chloride precursors (x=50 and 90), nitrate precursors (x=90), supersaturated nitrate solution (x=90), hybrid type with Zr, Ce and Si (with 10%mol of Si and x=90), Si palisade (with 10 and 30%mol of Si, and x=90) and Si palisade with synthesis temperature of 40°C (with 30%mol of Si and x=90). Aiming to obtain crystalline single phase walls and large supercial area, for future applications in catalysis. The composites polymer/zirconium-cerium synthesized from chloride precursors formed an organized lamellar structure, which transforms into a disordered porous system after the calcination to remove the template. The template decomposition/removal up to 540°C produces phase transformations in the metallic precursors, besides morphological changes. A CeO2 content of 90% resulted in a porous material with homogeneous walls of fcc structure and better mechanical stability. The values of supercial area and pore volume depend mostly on the preparation method rather than the CeO2 concentration. Signicant increases on supercial area (~100m²/g) and pore volume (~0.4cm³/g) were obtained with the introduction of silica into the material. Supercial area ~6 times larger and crystallite size ~4 times superior to a nanocrystalline similar material, made by gel-combustion were attained. These figures are also equal to the ones reported for the best porous zirconia-ceria materials, prepared by other routes, found in the literature.
|
560 |
Characterization of fading effects of a MOSFET semiconductor dosimeter to be used on an X-ray laserHäger, Wille January 2017 (has links)
In the European XFEL, electrons bunches are accelerated up to 20 GeV and thenenter undulators where coherent X-rays are produced which can be used for imaging atva molecular level. Electrons may stray from the path and hit the permanent magnets inthe undulators. It is well known that ionizing radiation can affect the magnetic characteristics of permanent magnets. The undulators are therefore equipped with a type of semiconductor dosimeters, RADFETs, so that the potential damage from ionizing radiation to the magnets can be measured and corrected for. It is also known that heat will be generated from air-coils in the accelerator which can change the ambient temperature around the dosimeters up to 25 K. All semiconductor technology is highly susceptible totemperature. This report investigates the fading characteristics of the RADFET under different temperatures and times after irradiation. It also investigates the dose responseunder dierent temperatures and estimates the magnitude of errors in measured dose which can be expected if temperatures are not accounted for. It is seen that a delta T of a few K can have a large impact on RADFETs' ability to both record and retain dose. A strong time dependence is also seen. The fading is the largest during irradiation andthen slows down exponentially, stabilizing after 1 to 2 months. An increase from 20 deg C to 26 deg C will increase the fading by 2 Gy/h during irradiation, and 0.015 Gy/h weeks afterirradiation. It is estimated that dose measurements at XFEL can have errors of up to 14% if long-term fading is not accounted for. A model for estimating long-term fading as a function of temperature is proposed.
|
Page generated in 0.1386 seconds