• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calcul des capacités parasites dans les interconnexions des circuits intégrés par une méthode de domaines fictifs

Putot, Sylvie 15 January 2001 (has links) (PDF)
Cette thèse présente une méthode performante pour le calcul des capacités parasites dues aux interconnexions des circuits intégrés. Il s'agit de calculer la charge des conducteurs, comme la dérivée normale à la surface de ces conducteurs, du potentiel solution de l'équation de Laplace sur des couches horizontales, la valeur du potentiel étant fixée constante sur chaque conducteur. La difficulté de la résolution numérique provient de la complexité des structures : sur une portion de circuit d'une surface d'un centimètre carré et d'une hauteur de quelques microns, il peut y avoir plus d'un kilomètre d'interconnexions, c'est-à-dire de fils conducteurs enchevêtrés. Une méthode de domaines fictifs avec multiplicateurs de Lagrange surfaciques est utilisée. Elle donne une formulation mixte du problème, couplant le potentiel sur un domaine parallélépipédique contenant le circuit, et la charge à la surface des conducteurs. Nous en proposons une approximation, qui tient compte du saut du gradient du potentiel à travers la surface des conducteurs dans la discrétisation du potentiel, tout en menant à un système que l'on peut résoudre par une méthode rapide. Cette approximation garantit une bonne convergence du calcul de la charge vers la valeur réelle, sans condition de compatibilité contraignante entre les maillages de volume et de surface. Une implémentation efficace en dimension 3, avec laquelle nous avons effectué des tests numériques sur des structures réelles, permet de montrer l'intérêt de la méthode, en temps de calcul et en place mémoire.
2

Analyse et mise en oeuvre de nouveaux algorithmes en méthodes spectrales

Yakoubi, Driss 19 December 2007 (has links) (PDF)
Cette thèse est composée de trois parties. Dans la première, nous considérons un système d'équations Reynolds Averaged Navier-Stokes en 3D, modélisant le couplage de deux fluides turbulents ( par exemple, océan/atmosphére). Nous proposons un schéma numérique, et nous montrons sa convergence vers l'unique solution du modèle.<br />La seconde partie est consacrée à une extension des méthodes spectrales dans des géométries complexes. Cette nouvelle méthode s'appuie sur deux idées: traitement des conditions aux limites de Dirichlet par pénalisation, en suivant la méthode de Nitsche, et une approximation de la géométrie par des pavés, en utilisant une octree (par exemple). <br />Nous donnons des erreurs de projection polyômiale et des estimations a priori. <br />Enfin, la dernière partie est consacrée au calucl scientifique où on a implémenté en C++ et validé cette méthode dans le logiciel FreeFem3d.
3

Évaluation numérique des éléments finis DKMQ pour les plaques et les coques / Numerical evaluation of DKMQ element for plates and shells

Maknun, Imam Jauhari 19 November 2015 (has links)
Dans le cadre linéaire, les modèles de Mindlin-Reissner pour les plaques épaisses et de Naghdi pour les coques épaisses sont les plus utilisés. Il est connu que la discrétisation par éléments finis de ces modèles conduit à un phénomène de verrouillage numérique quand l’épaisseur tend vers zéro. Il s’agit du verrouillage en cisaillement dans le cas des plaques et du verrouillage en cisaillement et en membrane dans le cas des coques. Il existe quelques éléments finis qui permettent d’éviter ces difficultés ou du moins de les réduire. L’élément DKMQ pour les plaques et sa version DKMQ24 pour les coques, sont des éléments de bas ordre, basés sur une formulation mixte, qui ont été proposés il y a quelques années afin d’éviter ces phénomènes de verrouillage. Dans cette thèse, on s’est attaché à évaluer numériquement les performances de ces éléments. Outre les cas tests classiques, on s’est focalisé sur l’analyse de la condition inf-sup discrète pour l’élément DKMQ. Nous avons étudié également le test de la s-norme proposé par Bathe, pour l’élément DKMQ24. Enfin, nous avons effectué une analyse d’erreur a posteriori pour les éléments DKMQ et DKMQ24, en utilisant l’estimateur d’erreur Z2 (dû à Zienkiewicz et Zhu), associé aux techniques de recouvrement de la moyenne, de projection ou encore SPR. Les résultats obtenus ont permis de quantifier les performances de ces deux éléments finis pour les problèmes de verrouillage, et d’en dégager les limites. Deux applications importantes de ces éléments DKMQ et DKMQ24 ont été ensuite présentées, la première concerne la simulation des poutres à parois minces à section ouverte et la seconde le calcul des plaques composites. / In the linear case, the Mindlin-Reissner model for thick plates and the Naghdi model for thick shells are commonly used. The finite element discretization of these models leads to numerical locking phenomenon when the thickness approaches zero : shear locking for plates and both shear and membrane locking for shells. There are some finite elements that could reduce or even eliminate this phenomenon. DKMQ element for plates or DKMQ24 element for shells, are low-order elements, based on a mixed formulation, introduced a few years ago to prevent the numerical locking phenomenon. In this thesis, we concentrated on numerical evaluation of the performance of these elements. Besides the classical benchmark tests, we also focused on the analysis of discrete inf-sup condition for DKMQ element. We studied the s-norm test proposed by Bathe for DKMQ24 element. Finally, we performed a posteriori error estimation for DKMQ and DKMQ24 elements, using the error estimator Z2 (proposed by Zienkiewicz and Zhu), associated with the averaging, projection or SPR recovery methods. The results obtained have enabled us to quantify the performance of these two finite elements for locking problems, and to identify their limits. Two important applications of these elements DKMQ and DKMQ24 were then presented ; the first one concerns thin-walled beams with open cross-section and the second one composite plates.

Page generated in 0.0803 seconds