Spelling suggestions: "subject:"coneshaped alternatives"" "subject:"domeshaped alternatives""
1 |
Optimal Tests for Panel DataBennala, Nezar 14 September 2010 (has links)
Dans ce travail, nous proposons des procédures de test paramétriques et nonparamétriques localement et asymptotiquement optimales au sens de Hajek et Le Cam, pour deux modèles de données de panel. Notre approche est fondée sur la théorie de Le Cam d'une part, pour obtenir les propriétés de normalité asymptotique, bases de la construction des tests paramétriques optimaux, et la théorie de Hajek d'autre part, qui, via un principe d'invariance, permet d'obtenir les procédures nonparamétriques.
Dans le premier chapitre, nous considérons un modèle à erreurs composées et nous nous intéressons au problème qui consiste à tester l'absence de l'effet individuel aléatoire. Nous
établissons la propriété de normalité locale asymptotique (LAN), ce qui nous permet de construire des procédures paramétriques localement et asymptotiquement optimales (“les plus stringentes”)
pour le problème considéré. L'optimalité de ces procédures est liée à la densité-cible f1. Ces propriétés d'optimalité sont hautement paramétriques puisqu'elles requièrent que la densité sous-jacente soit f1. De plus, ces procédures ne seront valides que si la densité-cible f1 et la densité sous-jacent g1 coincïdent. Or, en pratique, une spécification correcte de la densité sous-jacente g1 est non réaliste, et g1 doit être considérée comme un paramètre de nuissance. Pour éliminer cette nuisance, nous adoptons l'argument d'invariance et nous nous restreignons aux procédures fondées sur des statistiques qui sont mesurables par rapport au vecteur des rangs. Les tests que nous obtenons restent valide quelle que soit la densité sous-jacente et sont localement et asymptotiquement les plus stringents. Afin d'avoir des renseignements sur l'efficacité des tests
fondés sur les rangs sous différentes lois, nous calculons les efficacités asymptotiques relatives de ces tests par rapport aux tests pseudo-gaussiens, sous des densités g1 quelconques. Enfin, nous proposons quelques simulations pour comparer les performances des procédures proposées.
Dans le deuxième chapitre, nous considérons un modèle à erreurs composées avec autocorrélation d'ordre 1 et nous montrons que ce modèle jouit de la propriété LAN. A partir de ce résultat, nous construisons des tests optimaux, au sens local et asymptotique, pour trois problèmes de tests importants dans ce contexte : (a) test de l'absence d'effet individuel et d'autocorrélation; (b) test de l'absence d'effet individuel en présence d'une autocorrélation non
spécifiée; et (c) test de l'absence d'autocorrélation en présence d'un effet individuel non spécifié. Enfin, nous proposons quelques simulations pour comparer les performances des tests pseudogaussiens
et des tests classiques.
|
2 |
Optimal tests for panel dataBennala, Nezar 14 September 2010 (has links)
Dans ce travail, nous proposons des procédures de test paramétriques et nonparamétriques localement et asymptotiquement optimales au sens de Hajek et Le Cam, pour deux modèles de données de panel. Notre approche est fondée sur la théorie de Le Cam d'une part, pour obtenir les propriétés de normalité asymptotique, bases de la construction des tests paramétriques optimaux, et la théorie de Hajek d'autre part, qui, via un principe d'invariance, permet d'obtenir les procédures nonparamétriques.<p><p><p><p>Dans le premier chapitre, nous considérons un modèle à erreurs composées et nous nous intéressons au problème qui consiste à tester l'absence de l'effet individuel aléatoire. Nous<p>établissons la propriété de normalité locale asymptotique (LAN), ce qui nous permet de construire des procédures paramétriques localement et asymptotiquement optimales (“les plus stringentes”)<p>pour le problème considéré. L'optimalité de ces procédures est liée à la densité-cible f1. Ces propriétés d'optimalité sont hautement paramétriques puisqu'elles requièrent que la densité sous-jacente soit f1. De plus, ces procédures ne seront valides que si la densité-cible f1 et la densité sous-jacent g1 coincïdent. Or, en pratique, une spécification correcte de la densité sous-jacente g1 est non réaliste, et g1 doit être considérée comme un paramètre de nuissance. Pour éliminer cette nuisance, nous adoptons l'argument d'invariance et nous nous restreignons aux procédures fondées sur des statistiques qui sont mesurables par rapport au vecteur des rangs. Les tests que nous obtenons restent valide quelle que soit la densité sous-jacente et sont localement et asymptotiquement les plus stringents. Afin d'avoir des renseignements sur l'efficacité des tests<p>fondés sur les rangs sous différentes lois, nous calculons les efficacités asymptotiques relatives de ces tests par rapport aux tests pseudo-gaussiens, sous des densités g1 quelconques. Enfin, nous proposons quelques simulations pour comparer les performances des procédures proposées. <p><p><p><p>Dans le deuxième chapitre, nous considérons un modèle à erreurs composées avec autocorrélation d'ordre 1 et nous montrons que ce modèle jouit de la propriété LAN. A partir de ce résultat, nous construisons des tests optimaux, au sens local et asymptotique, pour trois problèmes de tests importants dans ce contexte :(a) test de l'absence d'effet individuel et d'autocorrélation; (b) test de l'absence d'effet individuel en présence d'une autocorrélation non<p>spécifiée; et (c) test de l'absence d'autocorrélation en présence d'un effet individuel non spécifié. Enfin, nous proposons quelques simulations pour comparer les performances des tests pseudogaussiens<p>et des tests classiques. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0682 seconds