Spelling suggestions: "subject:"periferial dependence""
1 |
Visual uncertainty in serial dependence : facing noise / Visuell osäkerhet vid seriellt beroende : effekt av brusLidström, Anette January 2019 (has links)
Empirical evidence suggests that the visual system uses prior visual information to predict the future state of the world. This is believed to occur through an information integration mechanism known as serial dependence. Current perceptions are influenced by prior visual information in order to create perceptual continuity in an everchanging noisy environment. Serial dependence has been found to occur for both low-level stimuli features (e.g., numerosity, orientation) and high-level stimuli like faces. Recent evidence indicates that serial dependence for low-level stimuli is affected by current stimulus reliability. When current stimuli are low in reliability, the perceptual influence from previously viewed stimuli is stronger. However, it is not clear whether stimulus reliability also affects serial dependence for high-level stimuli like faces. Faces are highly complex stimuli which are processed differently from other objects. Additionally, face perception is suggested to be especially vulnerable to external visual noise. Here, I used regular and visually degraded face stimuli to investigate whether serial dependence for faces is affected by stimulus reliability. The results showed that previously viewed degraded faces did not have a very strong influence on perceptions of currently viewed regular faces. In contrast, when currently viewed faces were degraded, the perceptual influence from previously viewed regular faces was rather strong. Surprisingly, there was a quite strong perceptual influence from previously viewed faces on currently viewed faces when both faces were degraded. This could mean that the effect of stimulus reliability in serial dependence for faces is not due to encoding disabilities, but rather a perceptual choice.
|
2 |
Optimal Tests for Panel DataBennala, Nezar 14 September 2010 (has links)
Dans ce travail, nous proposons des procédures de test paramétriques et nonparamétriques localement et asymptotiquement optimales au sens de Hajek et Le Cam, pour deux modèles de données de panel. Notre approche est fondée sur la théorie de Le Cam d'une part, pour obtenir les propriétés de normalité asymptotique, bases de la construction des tests paramétriques optimaux, et la théorie de Hajek d'autre part, qui, via un principe d'invariance, permet d'obtenir les procédures nonparamétriques.
Dans le premier chapitre, nous considérons un modèle à erreurs composées et nous nous intéressons au problème qui consiste à tester l'absence de l'effet individuel aléatoire. Nous
établissons la propriété de normalité locale asymptotique (LAN), ce qui nous permet de construire des procédures paramétriques localement et asymptotiquement optimales (“les plus stringentes”)
pour le problème considéré. L'optimalité de ces procédures est liée à la densité-cible f1. Ces propriétés d'optimalité sont hautement paramétriques puisqu'elles requièrent que la densité sous-jacente soit f1. De plus, ces procédures ne seront valides que si la densité-cible f1 et la densité sous-jacent g1 coincïdent. Or, en pratique, une spécification correcte de la densité sous-jacente g1 est non réaliste, et g1 doit être considérée comme un paramètre de nuissance. Pour éliminer cette nuisance, nous adoptons l'argument d'invariance et nous nous restreignons aux procédures fondées sur des statistiques qui sont mesurables par rapport au vecteur des rangs. Les tests que nous obtenons restent valide quelle que soit la densité sous-jacente et sont localement et asymptotiquement les plus stringents. Afin d'avoir des renseignements sur l'efficacité des tests
fondés sur les rangs sous différentes lois, nous calculons les efficacités asymptotiques relatives de ces tests par rapport aux tests pseudo-gaussiens, sous des densités g1 quelconques. Enfin, nous proposons quelques simulations pour comparer les performances des procédures proposées.
Dans le deuxième chapitre, nous considérons un modèle à erreurs composées avec autocorrélation d'ordre 1 et nous montrons que ce modèle jouit de la propriété LAN. A partir de ce résultat, nous construisons des tests optimaux, au sens local et asymptotique, pour trois problèmes de tests importants dans ce contexte : (a) test de l'absence d'effet individuel et d'autocorrélation; (b) test de l'absence d'effet individuel en présence d'une autocorrélation non
spécifiée; et (c) test de l'absence d'autocorrélation en présence d'un effet individuel non spécifié. Enfin, nous proposons quelques simulations pour comparer les performances des tests pseudogaussiens
et des tests classiques.
|
3 |
Optimal tests for panel dataBennala, Nezar 14 September 2010 (has links)
Dans ce travail, nous proposons des procédures de test paramétriques et nonparamétriques localement et asymptotiquement optimales au sens de Hajek et Le Cam, pour deux modèles de données de panel. Notre approche est fondée sur la théorie de Le Cam d'une part, pour obtenir les propriétés de normalité asymptotique, bases de la construction des tests paramétriques optimaux, et la théorie de Hajek d'autre part, qui, via un principe d'invariance, permet d'obtenir les procédures nonparamétriques.<p><p><p><p>Dans le premier chapitre, nous considérons un modèle à erreurs composées et nous nous intéressons au problème qui consiste à tester l'absence de l'effet individuel aléatoire. Nous<p>établissons la propriété de normalité locale asymptotique (LAN), ce qui nous permet de construire des procédures paramétriques localement et asymptotiquement optimales (“les plus stringentes”)<p>pour le problème considéré. L'optimalité de ces procédures est liée à la densité-cible f1. Ces propriétés d'optimalité sont hautement paramétriques puisqu'elles requièrent que la densité sous-jacente soit f1. De plus, ces procédures ne seront valides que si la densité-cible f1 et la densité sous-jacent g1 coincïdent. Or, en pratique, une spécification correcte de la densité sous-jacente g1 est non réaliste, et g1 doit être considérée comme un paramètre de nuissance. Pour éliminer cette nuisance, nous adoptons l'argument d'invariance et nous nous restreignons aux procédures fondées sur des statistiques qui sont mesurables par rapport au vecteur des rangs. Les tests que nous obtenons restent valide quelle que soit la densité sous-jacente et sont localement et asymptotiquement les plus stringents. Afin d'avoir des renseignements sur l'efficacité des tests<p>fondés sur les rangs sous différentes lois, nous calculons les efficacités asymptotiques relatives de ces tests par rapport aux tests pseudo-gaussiens, sous des densités g1 quelconques. Enfin, nous proposons quelques simulations pour comparer les performances des procédures proposées. <p><p><p><p>Dans le deuxième chapitre, nous considérons un modèle à erreurs composées avec autocorrélation d'ordre 1 et nous montrons que ce modèle jouit de la propriété LAN. A partir de ce résultat, nous construisons des tests optimaux, au sens local et asymptotique, pour trois problèmes de tests importants dans ce contexte :(a) test de l'absence d'effet individuel et d'autocorrélation; (b) test de l'absence d'effet individuel en présence d'une autocorrélation non<p>spécifiée; et (c) test de l'absence d'autocorrélation en présence d'un effet individuel non spécifié. Enfin, nous proposons quelques simulations pour comparer les performances des tests pseudogaussiens<p>et des tests classiques. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0776 seconds