• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 8
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental and analytical analysis of the stress-strain diagram of FRP-confined concrete with different loading rates

Sutherland, Brandy January 1900 (has links)
Master of Science / Department of Civil Engineering / Asadollah Esmaeily / The accuracy and applicability of the existing stress-strain models for concrete confined by Carbon Fiber Reinforced Polymer (CFRP) were analytically and experimentally explored. This investigation includes major parameters affecting the stress-strain response of confined concrete, including the loading pattern and protocol. It has been observed and reported that the experimentally recorded stress-strain relationship of the same specimen will be different if the loading protocol of the test is switched from displacement control to load control. In the experimental phase of this study, four standard 6" by 12" concrete cylinders were constructed using the same concrete batch for consistency. Three two-inch strain gauges were affixed equally spaced at mid-height on the surface of the specimen in the longitudinal direction, and two two-inch strain gauges were applied in the lateral direction at mid-height opposite each other. CFRP was then impregnated with a two-part epoxy and applied externally in two continuous layers, with an overlap. During the first phase of the experimental program, the tests were conducted with a constant load rate or with a constant displacement rate. The data was collected from externally mounted strain gauges and potentiometers positioned on the opposite sides of the cylinder in the longitudinal direction. Since the capacity of the existing actuator in the structural lab was less than the required failure level of the specimens, a nutcracker-like device was constructed to increase the mechanical advantage of the test frame in the second phase of the experimental program. In this phase, all tests were conducted in displacement control. Various models were selected to be studied from a large number of existing models that propose to determine the stress-strain relationship of concrete. Analytical predictions of the models were compared against the experimental data. Results show that some of the models provide a reasonable prediction of the real performance of the specimen. However, in general, predictions are different from the real performance for most models.
2

Response of concrete elements with varying compressive strength to impact by fragments with different aspect ratios

Brown, Jared L 25 November 2020 (has links)
Concrete is among the most common materials utilized to construct protective elements in hardened structures. Subsequently, understanding how a concrete member will respond to explosively driven fragment or projectile impact is critical to the protective design process. Explosively driven fragments can have many different shapes and sizes depending on the event that resulted in their creation. These geometric variations can include a high-aspect, or width to thickness, ratio; however, impact from fragments with elevated aspect ratios on hardened concrete has not been extensively studied. Therefore, reinforced concrete specimens were subjected to impact from fragments with different aspect ratios to illustrate and quantify the effect of fragment characteristics, protective element features, and experimental target size on local impact performance. A novel experimental technique was developed to allow for high-aspect ratio fragment impact on concrete slabs to be evaluated. The same concrete materials were also impacted with lower aspect ratio fragments for comparative purposes. Data collected from these two experimental series were utilized to analyze the effects of compressive strength, thickness, and fiber reinforcement on impact performance. The accuracy of existing penetration and spall prediction methodologies were evaluated for both fragment types. The kinetic energy required to cause reinforced concrete to present a breached condition due to the high-aspect ratio fragment was also analyzed. Modifications were made to existing contact charge equations to account for differences between the contact charge energy required to cause a breach condition and that required from fragment impact to produce a breach condition. The breach envelope defined by these relationships was further evaluated using a computational model calibrated specifically for this impact scenario. Finally, the effect of impact specimen geometry and confinement type on target performance was numerically evaluated. Artificial and inertial confinement were examined through varying target diameter to projectile diameter ratio with and without artificial circumferential confinement. Given the minimal data associated with local effects of high-aspect ratio fragment impact and the many factors that can influence concrete impact resistance, the information and relationships learned along with the analysis techniques developed herein can be utilized to improve the state of the art of protective design.
3

A comparative study of strength assessment methods for RC columns

Ataie, Feraidon Farahmand January 1900 (has links)
Master of Science / Department of Civil Engineering / Asadollah Esmaeily / Realistic strength assessment of reinforced concrete structural elements, especially columns in bridges and tall buildings is a critical need not only at design time, but also when an accurate evaluation of the strength is needed for decisions such as retrofit or replacement of an existing structure. Assessment of the flexural strength of a column under a specific axial load level is usually done by constructing the axial force-bending moment interaction response curve of the section. This assessment can be done using the code procedure. However, the code does not consider the confinement effect, and is based on the “stress block” assumption for a pre-assumed failure strain for concrete. It has been shown by various experimental and analytical studies that the performance of a reinforced concrete section is affected by different factors such loading history and material behavior. A realistic performance assessment should consider not only proper models for the monotonic and cyclic response of the material, but also analytical methods and procedures that can capture the effects of loading pattern and provide realistic predictions of the section capacity. Accuracy of the analytical methods in strength assessment of reinforced concrete sections was explored in a comparative study. These methods were compared and validated against the existing experimental data. The factors considered in these analytical procedures, included the effect of confinement, and the method employed in assessment of the axial-force-bending moment interaction response of a column section. The experimental data were collected from tests conducted on circular and rectangular columns under a constant axial load. It has been shown that the axial force-bending moment interaction curve, constructed based on the moment-curvature response of a section using a more detailed analytical method such as fiber-model, considering the confining effect of the lateral reinforcement, represents the most realistic and optimal response of a cross section.
4

Performance of confined concrete columns under simulated life cycles

Hart, Steven D. January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / Asadollah Esmaeily / Over the past 30 years, FRP composites (carbon, glass, or aramid fibers) have arisen as a method of retrofitting existing reinforced concrete structures to bring them up to current code standards of confinement and ductility. The development of stress-strain models for FRP confined concrete began with the adaptation of steel confinement models then progressed to models specifically developed based on test results from FRP confined specimens. State of the art stress-strain models for FRP confined concrete models may now be validated against a wide variety of published experimental results. Recent publications show researchers branching out and looking at other aspects of FRP confined concrete behavior, including the impact of sustained service loads on long term and ultimate behavior. An experimental program which examines the effects of sustained service loading on the ultimate axial performance of FRP confined concrete is presented. The program's purpose is to determine whether or not a material model developed without the presence of a sustained load accurately predicts the ultimate stress-strain response of FRP confined concrete previously subjected to a sustained service load. Equipment and procedures were developed to model the critical events in a building life cycle: construction, sustained service loading, minor critical events, rehabilitation, and ultimate performance. Varying the order of these events produces a simulated life cycle allowing analysis of the impact of strain history on ultimate performance. The results of the experimental program indicate that the presence of a sustained service load changes the expected failure mode from FRP rupture to FRP de-lamination and the stress-strain response of a specimen is approximately 10% below published models when sustained service loads are included in the life cycle. A comprehensive modeling process is proposed for modeling significant events in a structure's life cycle. Impacts on earthquake engineering and reliability studies are addressed and future research suggested. This research shows that life cycle modeling can improve the design and rehabilitation of structures so that they meet safety requirements in future seismic events.
5

Concrete Confined by Noncompliant Continuously Wound Ties

Mosier, Elizabeth 05 June 2023 (has links)
No description available.
6

LONG-TERM BEHAVIOR OF HYBRID FRP-CONCRETE BEAM-COLUMNS

NAGUIB, WASSIM IHAB 11 October 2001 (has links)
No description available.
7

Behavior Of Cfrp Confined Concrete Specimens Under Temperature Cycles And Sustained Loads

Erdil, Baris 01 February 2012 (has links) (PDF)
The application of carbon fiber reinforced polymers (CFRP) is one of the effective retrofitting and strengthening methods that is used worldwide and is starting to be used in Turkey as well because they have high strength and high modulus in the fiber direction, have very low coefficient of thermal expansion when compared to concrete and steel and are known not to corrode. Since FRPs are lightweight, their mass can be neglected when compared to concrete and steel. However, before proposing this material as an alternative for strengthening and retrofitting applications their long-term behavior should be understood because they are applied on to concrete by several layers of epoxy-based adhesives, which can be affected by change in humidity, temperature and load. Therefore, behavior of CFRP-strengthened structures in varying temperature and humidity conditions must be investigated. In this dissertation, behavior of CFRP confined cylindrical and prismatic concrete specimens having square cross-section were investigated under sustained compressive loads, dry and wet heating-cooling cycles, and outdoor exposures under direct sunlight, to determine the possible changes in their mechanical properties. Sustained loads were applied as the 40% and 50% of their confined axial load capacity. In addition to the sustained loads, specimens were subjected to 200 heating-cooling cycles between -10&deg / C to 50&deg / C. In order to understand the change in behavior of CFRP confined concrete specimens better, they were divided in six groups. A single effect was investigated in each group. After aging tests mechanical properties of the specimens were recorded via monotonic uniaxial loading. It was observed that temperature cycles had little effect on behavior but sustained loads changed the shape of the axial stress-strain diagram and resulted in a dramatic decrease in ultimate strain. Based on the test results and also using the data of similar studies available in the literature, strength and strain models considering the exposures as independent parameters were established and finally axial stress-strain curve was tried to be predicted.
8

An Analytical Study On Minimum Confinement In Spiral Columns

Ozkaya, Cenan 01 July 2005 (has links) (PDF)
ABSTRACT AN ANALYTICAL STUDY ON THE MINIMUM CONFINEMENT IN SPIRAL COLUMNS &Ouml / zkaya, Cenan M.S., Department of Civil Engineering Supervisor: Prof. Dr. G&uuml / ney &Ouml / zcebe Co-Supervisor: Prof. Dr. Ugur Ersoy July 2005, 135 pages The minimum spiral ratio equation given in the codes is derived by equating the strength at the second peak to the strength at the first peak for spiral columns tested under uniaxial load. In this study, specimen behavior under combined bending and axial load was taken as basis while deriving proposed equations. Analyses were carried out by using a Moment-Curvature program. For normal strength concrete, one regression and one simplified equation giving minimum spiral ratio are proposed. Difference between two equations arises from the number in front of (Ac/Ack). In regression equation, this number is calculated by means of a function. In simplified equation, this number is a constant. For high strength concrete, a different regression equation is proposed which is valid for concrete strengths up to 95 MPa. Simplified equation proposed for normal strength concrete is also proposed for high strength concrete up to concrete strengths of 120 MPa. It was found that / (i) Simplified equation proposed for normal and high strength concrete yielded consistent results in the range of variables studied / (ii) Except some points, regression equations yielded consistent results / (iii) It is recommended to use simplified equation instead of regression and code equations since it yields more consistent results than code and regression equations. Keywords: Confined Concrete, Ductility, Moment-Curvature, Minimum Spiral Volumetric Ratio
9

Stress-Strain Behavior for Actively Confined Concrete Using Shape Memory Alloy Wires

Zuboski, Gordon R. 09 August 2013 (has links)
No description available.
10

Experimental study on compressive behavior and failure analysis of composite concrete confined by glass/epoxy ±55° filament wound pipes

Gemi, L., Koroglu, M.A., Ashour, Ashraf 21 December 2017 (has links)
Yes / This paper investigates the strength and ductility of concrete confined by Glass/Epoxy ±55° Filament Wound Pipes (GFRP) under axial compression. A total of 24 cylinderical specimens were prepared with expansive and Portland cements, properly compacted and un-compacted for different composite fresh concrete matrix. Test results showed that compressive strength and axial deformation at failure of concrete confined with GFRP tubes increased by an average of 2.85 and 5.57 times these of unconfined concrete, respectively. Macro and micro analyses of GFRP pipes after failure were also investigated. Debonding, whitening, matrix/transfer cracking, delamination and splitting mechanisms were detected at failure, respectively. The experimental results were also employed to assess the reliability of design models available in the literature for confined concrete compressive strength.

Page generated in 0.0497 seconds