Spelling suggestions: "subject:"conformational analyses"" "subject:"conformational annalyses""
1 |
Sekundärstrukturen in ß-Peptiden und HydrazinopeptidenGünther, Robert 28 November 2004 (has links) (PDF)
In der vorliegenden Arbeit wird die Aufklärung der Konformation von Peptiden mit speziell modifizierten Aminosäuren beschrieben. Die Methoden der theoretischen Chemie (Quantenchemie, Molekülmechanik, Moleküldynamik) bilden dabei die Grundlage der Konformationsanalysen. Durch systematische Anwendung dieser Methoden werden im ersten Teil der Arbeit die konformativen Eigenschaften verschiedener [beta]-Aminosäuren und ihrer Oligomere ([beta]-Peptide) untersucht. Aus diesen Ergebnissen werden anschließend Regeln für das Sekundärstrukturdesign von ß-Peptiden abgeleitet. Der zweite Teil beschäftigt sich mit der theoretischen Konformationsanalyse von [alpha]- Hydrazinosäuren und ihrer Oligomere (Hydrazinopeptide). Aus den gewonnenen Erkenntnissen über die Ausbildung charakteristischer Sekundärstrukturelemente in diesen Verbindungen wird ebenfalls ein Regelwerk für das Design von Sekundärstrukturen aufgestellt. / The present work describes the conformational characteristics of pepttides with specifically modified amino acid constituents. For this purpose, the methods of theoretical chemistry (quantum chemistry, molecular mechanics, molecular dynamics) are utilisied for the conformational analyses. The conformation of various [beta]-amino acids and their oligomers ([beta]-peptides) are inverstigated in the first part of this work applying these methods. Rules for the design of definite secondary structures in [beta]-peptides are then derived from the obtained results. In the second part, systematic theoretical conformational analyses on [alpha]-hydrazino acids and their oligomers (hydrazino peptides) are described. The results are then used to compile a set of rules for the formation of characteriasitc secondary structures in this class of compounds.
|
2 |
Geometria diferencial e teoria da informação aplicada a análise de ensembles conformacionais de proteínas / Differential geometry and information theory application to protein conformational analysesSilva Neto, Antonio Marinho da 19 December 2017 (has links)
Um dos maiores desafios atuais na biologia estrutural é como lidar com flexibilidade de proteínas. Além do desafio experimental, uma limitação teórica é a falta de uma linguagem matemática conveniente para representação do espaço conformacional de proteínas. As representações mais populares apresentam diversas limitações, que se refletem nas dificuldades associadas à análise de ensembles conformacionais. Nesse contexto, a aplicação de geometria diferencial (GD) e teoria da informação (TI) foi pouco explorada. Neste trabalho investigamos o uso de descritores de GD e TI como uma representação matemática do espaço conformacional de proteínas aplicada à análise de ensembles conformacionais. O cálculo dos descritores de GD consiste em representar o backbone de proteínas como curvas espaciais e caracterizá-las utilizando os seus valores de curvatura, κ, e torção, τ . Baseado nesses valores, definimos medidas de flexibilidade, de distância entre conformações e aplicamos uma estratégia de clustering para identificação de estados conformacionais. Para permitir a aplicação de TI, desenvolvemos um sistema de codificação desses descritores para expressar cada conformação por uma sequência de símbolos finitos. A partir dessas sequências, definimos uma medida da informação associada a um resíduo, Rres, e a uma conformação, Rconf. Para investigar sua eficácia, aplicamos os métodos propostos aos ensembles conformacionais de três sistemas testes: 1) Ubiquitina, 2) E1-DBD do HPV18 e 3) as etapas de formação do complexo c-Myb-KIX. A análise da representação por geometria diferencial se mostrou igualmente eficaz ou superior aos métodos comumente utilizados em todos os sistemas analisados. O método é especialmente útil para monitoramento de estabilidade de hélices e para análise de proteínas e regiões muito flexíveis, pois evita a necessidade de sobreposição estrutural. Os valores de Rconf se apresentaram úteis para análise de processos de enovelamento e resíduos próximos a regiões funcionais tendem a apresentar maiores valores Rres. No entanto, o papel desses resíduos é incerto e mais estudos são necessários para determinar se há e qual é seu real significado. Apesar disso, as medidas de informação se mostraram úteis para comparação de estados conformacionais e permitem levantar hipóteses testáveis em laboratório. Por fim, a representação por GD é computacionalmente conveniente, intuitiva, evita todas as limitações dos métodos popularmente utilizados e se mostrou eficaz para análise de ensembles conformacionais. / One of the major challenges of modern structural biology is how to deal with protein flexibility. Besides the experimental difficulties, a relatively overlooked theoretical challenge is the lack of a proper mathematical language to represent proteín conformational space. The most popular representations have severe limitations, which reflects on the difficulties associated with conformational ensemble analyses. However, differential geometry (GD) and information theory (TI) can help to overcome such difficulties and were not well explored in this context. Here we investigate the usage of DG and TI as a mathematical representation of protein conformational space applied to the analyses of conformational ensembles. The DG descriptors calculation consists of representing protein backbone as a spatial curve and describes it by its curvature, κ, and torsion, τ . Based on those values, the distance between conformation and flexibility measurements were defined and a clustering algorithm was applied to identify conformational states. For the application of TI, a coding system for DG descriptors was developed to express each conformation as a sequence of finite symbols. Based on those sequences, information measurements associated to a residue, Rres, and to a conformation, Rconf , were defined. To investigate its efficacy, the proposed method was applied to conformation ensembles of three test systems: 1) Ubiquitin, 2) E1-DBD of HPV18 and 3) the steps of c-Myb-KIX binding. The DG analyses show equally good or superior performance when compared with popular methods on all tested system. In addition, the methods are especially useful to monitoring helix stability and analyses of very flexible proteins (or regions), since avoids the necessity of superposing structures. The values of Rconf are useful to compare different steps of a folding process and residues near regions involved in binding events tend to present higher values of Rres. However, those residues importance is uncertain and further studies are necessary to determinate if and how those can contribute to protein function. Nevertheless, the information measurements were informative on the comparison of compare conformational states and allow to formulate a testable hypothesis. On the other hand, the GD representation is computationally convenient, intuitive and avoid most of the limitations of the popular method applied to conformational ensemble analyses.
|
3 |
Geometria diferencial e teoria da informação aplicada a análise de ensembles conformacionais de proteínas / Differential geometry and information theory application to protein conformational analysesAntonio Marinho da Silva Neto 19 December 2017 (has links)
Um dos maiores desafios atuais na biologia estrutural é como lidar com flexibilidade de proteínas. Além do desafio experimental, uma limitação teórica é a falta de uma linguagem matemática conveniente para representação do espaço conformacional de proteínas. As representações mais populares apresentam diversas limitações, que se refletem nas dificuldades associadas à análise de ensembles conformacionais. Nesse contexto, a aplicação de geometria diferencial (GD) e teoria da informação (TI) foi pouco explorada. Neste trabalho investigamos o uso de descritores de GD e TI como uma representação matemática do espaço conformacional de proteínas aplicada à análise de ensembles conformacionais. O cálculo dos descritores de GD consiste em representar o backbone de proteínas como curvas espaciais e caracterizá-las utilizando os seus valores de curvatura, κ, e torção, τ . Baseado nesses valores, definimos medidas de flexibilidade, de distância entre conformações e aplicamos uma estratégia de clustering para identificação de estados conformacionais. Para permitir a aplicação de TI, desenvolvemos um sistema de codificação desses descritores para expressar cada conformação por uma sequência de símbolos finitos. A partir dessas sequências, definimos uma medida da informação associada a um resíduo, Rres, e a uma conformação, Rconf. Para investigar sua eficácia, aplicamos os métodos propostos aos ensembles conformacionais de três sistemas testes: 1) Ubiquitina, 2) E1-DBD do HPV18 e 3) as etapas de formação do complexo c-Myb-KIX. A análise da representação por geometria diferencial se mostrou igualmente eficaz ou superior aos métodos comumente utilizados em todos os sistemas analisados. O método é especialmente útil para monitoramento de estabilidade de hélices e para análise de proteínas e regiões muito flexíveis, pois evita a necessidade de sobreposição estrutural. Os valores de Rconf se apresentaram úteis para análise de processos de enovelamento e resíduos próximos a regiões funcionais tendem a apresentar maiores valores Rres. No entanto, o papel desses resíduos é incerto e mais estudos são necessários para determinar se há e qual é seu real significado. Apesar disso, as medidas de informação se mostraram úteis para comparação de estados conformacionais e permitem levantar hipóteses testáveis em laboratório. Por fim, a representação por GD é computacionalmente conveniente, intuitiva, evita todas as limitações dos métodos popularmente utilizados e se mostrou eficaz para análise de ensembles conformacionais. / One of the major challenges of modern structural biology is how to deal with protein flexibility. Besides the experimental difficulties, a relatively overlooked theoretical challenge is the lack of a proper mathematical language to represent proteín conformational space. The most popular representations have severe limitations, which reflects on the difficulties associated with conformational ensemble analyses. However, differential geometry (GD) and information theory (TI) can help to overcome such difficulties and were not well explored in this context. Here we investigate the usage of DG and TI as a mathematical representation of protein conformational space applied to the analyses of conformational ensembles. The DG descriptors calculation consists of representing protein backbone as a spatial curve and describes it by its curvature, κ, and torsion, τ . Based on those values, the distance between conformation and flexibility measurements were defined and a clustering algorithm was applied to identify conformational states. For the application of TI, a coding system for DG descriptors was developed to express each conformation as a sequence of finite symbols. Based on those sequences, information measurements associated to a residue, Rres, and to a conformation, Rconf , were defined. To investigate its efficacy, the proposed method was applied to conformation ensembles of three test systems: 1) Ubiquitin, 2) E1-DBD of HPV18 and 3) the steps of c-Myb-KIX binding. The DG analyses show equally good or superior performance when compared with popular methods on all tested system. In addition, the methods are especially useful to monitoring helix stability and analyses of very flexible proteins (or regions), since avoids the necessity of superposing structures. The values of Rconf are useful to compare different steps of a folding process and residues near regions involved in binding events tend to present higher values of Rres. However, those residues importance is uncertain and further studies are necessary to determinate if and how those can contribute to protein function. Nevertheless, the information measurements were informative on the comparison of compare conformational states and allow to formulate a testable hypothesis. On the other hand, the GD representation is computationally convenient, intuitive and avoid most of the limitations of the popular method applied to conformational ensemble analyses.
|
4 |
Sekundärstrukturen in ß-Peptiden und HydrazinopeptidenGünther, Robert 13 May 2002 (has links)
In der vorliegenden Arbeit wird die Aufklärung der Konformation von Peptiden mit speziell modifizierten Aminosäuren beschrieben. Die Methoden der theoretischen Chemie (Quantenchemie, Molekülmechanik, Moleküldynamik) bilden dabei die Grundlage der Konformationsanalysen. Durch systematische Anwendung dieser Methoden werden im ersten Teil der Arbeit die konformativen Eigenschaften verschiedener [beta]-Aminosäuren und ihrer Oligomere ([beta]-Peptide) untersucht. Aus diesen Ergebnissen werden anschließend Regeln für das Sekundärstrukturdesign von ß-Peptiden abgeleitet. Der zweite Teil beschäftigt sich mit der theoretischen Konformationsanalyse von [alpha]- Hydrazinosäuren und ihrer Oligomere (Hydrazinopeptide). Aus den gewonnenen Erkenntnissen über die Ausbildung charakteristischer Sekundärstrukturelemente in diesen Verbindungen wird ebenfalls ein Regelwerk für das Design von Sekundärstrukturen aufgestellt. / The present work describes the conformational characteristics of pepttides with specifically modified amino acid constituents. For this purpose, the methods of theoretical chemistry (quantum chemistry, molecular mechanics, molecular dynamics) are utilisied for the conformational analyses. The conformation of various [beta]-amino acids and their oligomers ([beta]-peptides) are inverstigated in the first part of this work applying these methods. Rules for the design of definite secondary structures in [beta]-peptides are then derived from the obtained results. In the second part, systematic theoretical conformational analyses on [alpha]-hydrazino acids and their oligomers (hydrazino peptides) are described. The results are then used to compile a set of rules for the formation of characteriasitc secondary structures in this class of compounds.
|
5 |
DETERMINATION OF THE STRUCTURE AND SEQUENCE OF GAS-PHASE PEPTIDES USING SPECTROSCOPIC AND MASS SPECTROMETRIC METHODSJoshua L Fischer (11115042) 22 July 2021 (has links)
The function of many biological processes depends on the structure and composition of the biomolecules involved. Both spectroscopy and mass spectrometry provide complimentary information regarding the three-dimensional conformation and the composition, respectively, as well as many other things. Here, double resonance conformer specific spectroscopy coupled with the latest ab inito computational methods is used to make structural assignments at the atomic resolution as well obtain information regarding propensities of intramolecular interactions. Additionally, rapid cooling in conjunction with IR excitation to modulate and measure the relative populations of conformers present in the expansion. Two different designer peptide systems are studied, including an achiral acylated 𝛼-aminoisobutryic acid dipeptide (Ac-AIB2-R) with various C-terminal protecting groups (R=NHBn, NHBnF, 𝛼-methylbenzylamine) and an acylated 𝛾4-phenylalanine (Ac-𝛾4Phe-NHMe) with the a methyl amine C-terminal protecting group. Mass spectrometry is used to determine the kinetics of gas-phase covalent tagging reactions used to enhance the sequence coverage. The covalent modification reactions utilize click chemistry between NHS or HOBt substituted sulfobenzoic acid tags with nucleophiles present on the residues of the amino acids composing the backbone. Effective temperatures are approximated using the Tolmachev model, which relates the statistical average internal energy of the molecule to a temperature.
|
Page generated in 0.1247 seconds