• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 54
  • 50
  • 12
  • 10
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 343
  • 125
  • 67
  • 49
  • 33
  • 30
  • 29
  • 24
  • 23
  • 23
  • 22
  • 20
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The homotopy exponent problem for certain classes of polyhedral products

Robinson, Daniel Mark January 2012 (has links)
Given a sequence of n topological pairs (X_i,A_i) for i=1,...,n, and a simplicial complex K, on n vertices, there is a topological space (X,A)^K by a construction of Buchstaber and Panov. Such spaces are called polyhedral products and they generalize the central notion of the moment-angle complex in toric topology. We study certain classes of polyhedral products from a homotopy theoretic point of view. The boundary of the 2-dimensional n-sided polygon, where n is greater than or equal to 3, may be viewed as a 1-dimensional simplicial complex with n vertices and n faces which we call the n-gon. When K is an n-gon for n at least 5, (D^2,S^1)^K is a hyperbolic space, by a theorem of Debongnie. We show that there is an infinite basis of the rational homotopy of the based loop space of (D^2,S^1)^K represented by iterated Samelson products. When K is an n-gon, for n at least 3, and P^m(p^r) is a mod p^r Moore space with m at least 3 and r at least 1, we show that the order of the elements in the p-primary torsion component in the homotopy groups of (Cone X, X)^K, where X is the loop space of P^m(p^r), is bounded above by p^{r+1}. This result provides new evidence in support of a conjecture of Moore. Moreover, this bound is the best possible and in fact, if a certain conjecture of M.J Barratt is assumed to be true, then this bound is also valid, and is the best possible, when K is an arbitrary simplicial complex.
52

Galois representations and Mumford-Tate groups attached to abelian varieties / Représentations galoisiennes et groupe de Mumford-Tate associé à une variété abélienne

Lombardo, Davide 10 December 2015 (has links)
Soient $K$ un corps de nombres et $A$ une variété abélienne sur $K$ dont nous notons $g$ la dimension. Pour tout premier $ell$, le module de Tate $ell$-adique de $A$ nous fournit une représentation $ell$-adique du groupe de Galois absolu de $K$, et c'est à l'image de ces représentations galoisiennes que l'on s'intéresse dans cette thèse.Pour de nombreuses classes de variétés abéliennes on possède une description de ces images à une erreur finie près : le premier but de ce travail est de quantifier explicitement cette erreur dans plusieurs cas différents. On parvient à résoudre complètement le problème pour une courbe elliptique sans multiplication complexe, ou plus généralement pour un produit de telles courbes elliptiques, et pour toute variété abélienne géométriquement simple admettant multiplication complexe. Pour d'autres classes de variétés abéliennes $A/K$ on obtient seulement une description de l'image de Galois pour tout premier $ell$ plus grand qu'une certaine borne (que l'on calcule explicitement, et qui est polynomiale en le degré de $K$ et en la hauteur de Faltings de $A$) : nous prouvons de tels résultats pour toute surface abélienne semistable et géométriquement simple et pour les variétés dites "de type $operatorname{GL}_2$''. On montre également un résultat semblable, mais un peu affaibli, pour de nombreuses variétés abéliennes de dimension impaire dont l'anneau des endomorphismes est réduit à $mathbb{Z}$.On s'intéresse ensuite à l'action de Galois sur des variétés abéliennes non simples, et on donne des conditions suffisantes pour que les représentations galoisiennes qui leur sont associées se décomposent elles-mêmes en produit. Finalement on étudie l'intersection entre les extensions cyclotomiques d'un corps de nombres $K$ et les corps engendrés par les points de torsion d'une variété abélienne sur $K$, et on établit des propriétés d'uniformité des degrés de ces intersections. / Let $K$ be a number field and $A$ be a $g$-dimensional abelian variety over $K$. For every prime $ell$, the $ell$-adic Tate module of $A$ gives rise to an $ell$-adic representation of the absolute Galois group of $K$; in this thesis we set out to study the images of the Galois representations arising in this way.For various classes of abelian varieties a description of these images is known up to finite error, and the first aim of this work is to explicitly quantify this error for a number of different cases. We provide a complete solution for the case of elliptic curves without complex multiplication (and more generally for products thereof) and for geometrically simple abelian varieties of CM type. For other classes of abelian varieties we can only describe the Galois image when the prime $ell$ is above a certain bound (which we compute explicitly in terms of $A$, and which is polynomial in $[K:mathbb{Q}]$ and in the Faltings height of $A$): we obtain such results for geometrically simple, semistable abelian surfaces and for "$operatorname{GL}_2$-type" varieties. We also prove similar (but slightly weaker) results for many abelian varieties of odd dimension with trivial endomorphism algebra.We then consider the Galois action on non-simple abelian varieties, and we give sufficient conditions for the associated Galois representations to decompose as a product.Finally, we investigate the structure of the intersection between the cyclotomic extensions of a number field $K$ and the fields generated by the torsion points of an abelian variety over $K$, proving a uniformity property for the degrees of such intersections.
53

Distinguished representations : the generalized injectivity conjecture and symplectic models for unitary groups / Autour des représentations distinguées : la conjecture d'injectivité généralisée et modèles symplectiques pour les groupes unitaires

Dijols, Sarah 06 July 2018 (has links)
Soit $G$ un groupe connexe quasi-déployé défini sur un corps non-Archimédien de caractéristique nulle. On suppose que l'on se donne un sous-groupe parabolique standard de décomposition de Levi $P=MU$ ainsi qu'une représentation irréductible tempérée $\tau$ de $M$. Soit $\nu$ un élement dans le dual de l'algèbre de Lie de la composante déployée de $M$; on le choisit dans la chambre de Weyl positive. La représentation induite $I_P^G(\tau_{\nu})$ est appelée module standard. Quand la représentation $\tau$ est générique (pour un caractère non-dégénéré de $U$), i.e a un modèle de Whittaker, le module standard $I_P^G(\tau_{\nu})$ est également générique.Casselman et Shahidi ont conjecturé que l'unique sous-quotient générique apparaissait nécessairement comme sous-représentation dans le module standard $I_P^G(\tau_{\nu})$. Ceci a été démontrée dans le cas des groupes classiques $SO(2n+1), Sp(2n)$, et $SO(2n)$ quand $P$ est un sous-groupe parabolique maximal de $G$, par Hanzer en 2010.Dans notre travail, nous formulons et étudions ce problème dans le contexte plus général d'un groupe connexe quasi-déployé tel que les composantes irréductibles de $\Sigma_{\sigma}$ sont de type $A,B,C$ ou $D$.Dans la deuxième partie de cette thèse (en commun avec D.Prasad), nous prouvons d'abord qu'il n'existe pas de representation cuspidale du groupe quasi-déployé $\U_{2n}(F)$ qui soit distinguée par son sous-groupe $\Sp_{2n}(F)$ pour $F$ un corps local non-Archimédien. Nous prouvons ensuite le théorème équivalent pour un corps global: il n'existe pas de représentation cuspidale de $\U_{2n}(\A_k)$ qui ait une période symplectique non nulle pour $k$ un corps de nombres ou corps de fonctions. / Let $G$ be a quasi-split connected reductive group over a non-Archimedean local field $F$ of characteristic zero. We assume we are given a standard parabolic subgroup $P$ with Levi decomposition $P=MU$ as well as an irreducible, tempered representation $\tau$ of $M$. Let now $\nu$ be an element in the dual of the real Lie algebra of the split component of $M$; we take it in the positive Weyl chamber. The induced representation $I_P^G(\tau_{\nu})$ is called a standard module. When the representation $\tau$ is generic (for a non-degenerate character of $U$), i.e. has a Whittaker model, the standard module $I_P^G(\tau_{\nu})$ is also generic. Casselman and Shahidi have conjectured that the unique irreducible generic subquotient of a standard module $I_P^G(\tau_{\nu})$ is necessarily a subrepresentation. This conjecture known as the Generalized Injectivity Conjecture was proved for the classical groups $SO(2n+1), Sp(2n)$, and $SO(2n)$ for $P$ a maximal parabolic subgroup, by Hanzer in 2010.In our work, we formulate and study this problem for any quasi-split connected reductive group such that the irreducible components of $\Sigma_{\sigma}$ are of type $A,B,C$ or $D$. In the second part of this thesis (joint work with D.Prasad), we prove that there are no cuspidal representations of the quasi-split unitary groups $\U_{2n}(F)$ distinguished by $\Sp_{2n}(F)$ for $F$ a non-archimedean local field. We also prove the corresponding global theorem that there are no cuspidal representations of $\U_{2n}(\A_k)$ with nonzero period integral on $\Sp_{2n}(k) \backslash \Sp_{2n}(\A_k)$ for $k$ any number field or a function field.
54

Collatz’s Problem and Encoding Vectors

Stroup, David A. 18 May 2006 (has links)
No description available.
55

Lambda designs for lambda less than 60

Puliyambalath, Naushad Pasha 05 November 2009 (has links)
No description available.
56

Isolated Point Theorems for Uniform Algebras on Manifolds

Ghosh, Swarup Narayan 03 July 2014 (has links)
No description available.
57

Conditions on the existence of unambiguous morphisms

Nevisi, Hossein January 2012 (has links)
A morphism $\sigma$ is \emph{(strongly) unambiguous} with respect to a word $\alpha$ if there is no other morphism $\tau$ that maps $\alpha$ to the same image as $\sigma$. Moreover, $\sigma$ is said to be \emph{weakly unambiguous} with respect to a word $\alpha$ if $\sigma$ is the only \emph{nonerasing} morphism that can map $\alpha$ to $\sigma(\alpha)$, i.\,e., there does not exist any other nonerasing morphism $\tau$ satisfying $\tau(\alpha) = \sigma(\alpha)$. In the first main part of the present thesis, we wish to characterise those words with respect to which there exists a weakly unambiguous \emph{length-increasing} morphism that maps a word to an image that is strictly longer than the word. Our main result is a compact characterisation that holds for all morphisms with ternary or larger target alphabets. We also comprehensively describe those words that have a weakly unambiguous length-increasing morphism with a unary target alphabet, but we have to leave the problem open for binary alphabets, where we can merely give some non-characteristic conditions. \par The second main part of the present thesis studies the question of whether, for any given word, there exists a strongly unambiguous \emph{1-uniform} morphism, i.\,e., a morphism that maps every letter in the word to an image of length $1$. This problem shows some connections to previous research on \emph{fixed points} of nontrivial morphisms, i.\,e., those words $\alpha$ for which there is a morphism $\phi$ satisfying $\phi(\alpha) = \alpha$ and, for a symbol $x$ in $\alpha$, $\phi(x) \neq x$. Therefore, we can expand our examination of the existence of unambiguous morphisms to a discussion of the question of whether we can reduce the number of different symbols in a word that is not a fixed point such that the resulting word is again not a fixed point. This problem is quite similar to the setting of Billaud's Conjecture, the correctness of which we prove for a special case.
58

Topological reconstruction and compactification theory

Pitz, Max F. January 2015 (has links)
This thesis investigates the topological reconstruction problem, which is inspired by the reconstruction conjecture in graph theory. We ask how much information about a topological space can be recovered from the homeomorphism types of its point-complement subspaces. If the whole space can be recovered up to homeomorphism, it is called reconstructible. In the first part of this thesis, we investigate under which conditions compact spaces are reconstructible. It is shown that a non-reconstructible compact metrizable space must contain a dense collection of 1-point components. In particular, all metrizable continua are reconstructible. On the other hand, any first-countable compactification of countably many copies of the Cantor set is non-reconstructible, and so are all compact metrizable h-homogeneous spaces with a dense collection of 1-point components. We then investigate which non-compact locally compact spaces are reconstructible. Our main technical result is a framework for the reconstruction of spaces with a maximal finite compactification. We show that Euclidean spaces &reals;<sup>n</sup> and all ordinals are reconstructible. In the second part, we show that it is independent of ZFC whether the Stone-&Ccaron;ech remainder of the integers, &omega;&ast;, is reconstructible. Further, the property of being a normal space is consistently non-reconstructible. Under the Continuum Hypothesis, the compact Hausdorff space &omega;&ast; has a non-normal reconstruction, namely the space &omega;&ast;&bsol;&lcub;p&rcub; for a P-point p of &omega;&ast;. More generally, the existence of an uncountable cardinal &kappa; satisfying &kappa; = &kappa;<sup>&lt;&kappa;</sup> implies that there is a normal space with a non-normal reconstruction. The final chapter discusses the Stone-&Ccaron;ech compactification and the Stone-&Ccaron;ech remainder of spaces &omega;&ast;&bsol;&lcub;x&rcub;. Assuming the Continuum Hypothesis, we show that for every point x of &omega;&ast;, the Stone-&Ccaron;ech remainder of &omega;&ast;&lcub;x&rcub; is an &omega;<sub>2</sub>-Parovi&ccaron;enko space of cardinality 2<sup>2<sup>c</sup></sup> which admits a family of 2<sup>c</sup> disjoint open sets. This implies that under 2<sup>c</sup> = &omega;<sub>2</sub>, the Stone-&Ccaron;ech remainders of &omega;&ast;&bsol;&lcub;x&rcub; are all homeomorphic, regardless of which point x gets removed.
59

Crepant resolution conjecture for Donaldson-Thomas invariants via wall-crossing

Beentjes, Sjoerd Viktor January 2018 (has links)
Let Y be a smooth complex projective Calabi{Yau threefold. Donaldson-Thomas invariants [Tho00] are integer invariants that virtually enumerate curves on Y. They are organised in a generating series DT(Y) that is interesting from a variety of perspectives. For example, well-known series in mathematics and physics appear in explicit computations. Furthermore, closer to the topic of this thesis, the generating series of birational Calabi-Yau threefolds determine one another [Cal16a]. The crepant resolution conjecture for Donaldson-Thomas invariants [BCY12] conjectures another such comparison result. It relates the Donaldson{Thomas generating series of a certain type of three-dimensional Calabi-Yau orbifold to that of a particular resolution of singularities of its coarse moduli space. The conjectured relation is an equality of generating series. In this thesis, I first provide a counterexample showing that this conjecture cannot hold as an equality of generating series. I then verify that both generating series are the Laurent expansion about different points of the same rational function. This suggests a reinterpretation of the crepant resolution conjecture as an equality of rational functions. Second, following a strategy of Bridgeland [Bri11] and Toda [Tod10a, Tod13, Tod16a], I prove a wall-crossing formula in a motivic Hall algebra relating the Hilbert scheme of curves on the orbifold to that on the resolution. I introduce the notion of pair object associated to a torsion pair, putting ideal sheaves and stable pairs on the same footing, and generalise the wall-crossing formula to this setting, essentially breaking the former in many pieces. Pairs, and their wall-crossing formula, are fundamentally objects of the bounded derived category of the Calabi-Yau orbifold. Finally, I present joint work with J. Calabrese and J. Rennemo [BCR] in which we use the wall-crossing formula and Joyce's integration map to prove the crepant resolution conjecture for Donaldson-Thomas invariants as an equality of rational functions. A crucial ingredient is a result of J. Rennemo that detects when two generating functions related by a wall-crossing are expansions of the same rational function.
60

Equivariant index theory and non-positively curved manifolds

Shan, Lin. January 2007 (has links)
Thesis (Ph. D. in Mathematics)--Vanderbilt University, May 2007. / Title from title screen. Includes bibliographical references.

Page generated in 0.043 seconds