Spelling suggestions: "subject:"conjugacy classes"" "subject:"conjuagacy classes""
1 |
Weyl group elements associated to conjugacy classesChan, Kei-yuen., 陳佳源. January 2010 (has links)
published_or_final_version / Mathematics / Master / Master of Philosophy
|
2 |
On Conjugacy Classes of Closed Subgroups and Stabilizers of BorelS.G. Dani, dani@math.tifr.res.in 15 May 2001 (has links)
No description available.
|
3 |
The theory of knots and associated problemsGarside, F. A. January 1965 (has links)
No description available.
|
4 |
A Study on the Algebraic Structure of SL(2,p)North, Evan I. 11 May 2016 (has links)
No description available.
|
5 |
On Sylow 2-subgroups of finite simple groups of order up to 2 <sup>10</sup>Malyushitsky, Sergey Zenonovich January 2004 (has links)
No description available.
|
6 |
Conjugacy classes and factorised groupsOrtiz Sotomayor, Víctor Manuel 02 September 2019 (has links)
Tesis por compendio / [ES] Un problema clásico en la teoría de grupos finitos es el estudio de cómo los tamaños de las clases de conjugación influyen sobre la estructura del grupo. En las últimas décadas, numerosos investigadores han obtenido nuevos avances en esta línea. Especialmente, se han probado resultados interesantes a partir de la información proporcionada por los tamaños de clase de algún subconjunto de elementos del grupo, como los elementos de orden potencia de primo, elementos p-regulares, etc. Además, ciertos subconjuntos de elementos definidos a través de la tabla de caracteres del grupo están siendo investigados recientemente, como los elementos anuladores y los elementos reales.
Por otra parte, en los últimos años, el estudio de grupos factorizados como producto de subgrupos ha sido objeto de creciente interés. En particular, diversos autores han analizado la estructura de grupos factorizados en los que diferentes familias de subgrupos de los factores satisfacen ciertas condiciones de permutabilidad.
En esta tesis pretendemos conjugar ambas perspectivas de actualidad en la teoría de grupos de manera novedosa. Así, en este contexto de literatura escasa, el objetivo es obtener nuevas contribuciones acerca de la estructura global de un grupo factorizado a partir de ciertas propiedades aritméticas de los tamaños de las clases de algunos elementos de sus factores.
Estudiamos productos de dos subgrupos, eventualmente mutuamente permutables, donde los elementos (p-regulares) de orden potencia de primo de los factores tienen tamaños de clase libres de cuadrados. Analizamos el caso de tamaños de clase potencias de primos para grupos factorizados arbitrarios, evitando el uso de condiciones de permutabilidad entre los factores involucrados. El concepto de una core-factorización de un grupo, que extiende en particular a los productos mutuamente permutables, es introducido por primera vez en esta tesis y ha resultado crucial dentro de este contexto. Esta noción surge precisamente cuando consideramos las anteriores propiedades aritméticas para los tamaños de clase de elementos anuladores, interrelacionando novedosamente la teoría de caracteres con la investigación en grupos factorizados. Finalmente, estudiamos grupos que poseen una core-factorización cuyos tamaños de clase de pi-elementos (de orden potencia de primo) son pi-números o pi'-números. / [CA] Un problema clàssic dins de la teoria de grups finits és l'estudi de com els tamanys de les classes de conjugació influeixen sobre l'estructura del grup. En les últimes dècades, nombrosos investigadors han obtingut nous avanços en aquesta línia. Especialment, s'han provat resultats interessants a partir de la informació proporcionada pels tamanys de classe d'algun subconjunt d'elements del grup, com els elements d'ordre potència de primer, elements p-regulars, etc. A més, certs subconjunts d'elements definits a través de la taula de caràcters del grup estan sent investigats recentment, com els elements anul·ladors i els elements reals.
D'altra banda, en els últims anys, l'estudi de grups factoritzats com a producte de subgrups ha sigut objecte de creixent interés. En particular, diversos autors han analitzat l'estructura de grups factoritzats en els quals diferents famílies de subgrups dels factors satisfan certes condicions de permutabilitat.
En aquesta tesi pretenem conjugar ambdues perspectives d'actualitat en la teoria de grups de manera innovadora. En aquest context de literatura escassa, l'objectiu és obtenir noves contribucions sobre l'estructura global d'un grup factoritzat a partir de certes propietats aritmètiques dels tamanys de les classes d'alguns elements dels seus factors.
Estudiem productes de dos subgrups, eventualment mútuament permutables, on els elements (p-regulars) d'ordre potència de primer dels factors tenen tamany de classe llibre de quadrats. Analitzem el cas de tamanys de classe potències de primers per a grups factoritzats arbitraris, evitant l'ús de condicions de permutabilitat entre els factors involucrats. El concepte d'una core-factorització d'un grup, que estén particularment als productes mútuament permutables, és introduït per primera vegada en aquesta tesi i ha resultat determinant dins d'aquest context. Aquesta noció sorgeix precisament quan considerem les propietats aritmètiques anteriors per als tamanys de classe d'elements anul·ladors, interrelacionant innovadorament la teoria de caràcters amb la investigació en grups factoritzats. Finalment, estudiem grups els quals posseeixen una core-factorització on els tamanys de classe dels pi-elements (d'ordre potència de primer) són pi-números o pi'-números. / [EN] The influence of the conjugacy class sizes on the structure of a group has been a widely investigated problem within finite group theory. In the last decades, several researchers have obtained new progress in this direction. Specially, some relevant information is provided by the class sizes of certain subsets of elements of the group, as prime power order elements, p-regular elements, etc. Other subsets of elements that have recently attracted interest are defined via the character table of the group, as vanishing elements and real elements.
In parallel to this research on conjugacy classes, the study of groups which can be factorised as a product of two subgroups has gained increasing interest. In particular, the structure of factorised groups such that different families of subgroups of the factors satisfy certain permutability conditions has recently been analysed.
In this thesis we aim to combine in a novel way both perspectives of group theory. In this framework of very scarce literature, our main purpose is to obtain new contributions about the global structure of a factorised group when the class lengths of some elements in its factors verify certain arithmetical properties.
Square-free class length conditions on (p-regular) prime power order elements are considered for products of two subgroups, occasionally mutually permutable. Prime power class sizes are investigated for arbitrary products of two groups, avoiding the use of permutability conditions between the factors. The concept of a core-factorisation of a group, which particularly extends products of mutually permutable subgroups, is introduced for the first time in this dissertation, and it has been revealed determinant within this context. Precisely, this notion emerges when discussing the above arithmetical properties on the class sizes of vanishing elements, interplaying as a novelty character theory and the research on factorised groups. Core-factorisations are also exploited when analysing pi-number and pi'-number class lengths for (prime power order) pi-elements in the factors of a factorised group. / This dissertation has been elaborated at the Instituto Universitario de Matemática Pura y Aplicada de la Universitat Politècnica de València (IUMPA-UPV), thanks mainly to the financial
support of the predoctoral grant ACIF/2016/170 from Generalitat Valenciana (Spain). The first
academic year was supported by Proyecto Prometeo II/2013/013 from Generalitat Valenciana.
The institute IUMPA has financed some travel expenses of the author’s attendances to research
conferences. This research has been partially supported by Proyecto PGC2018-096872-B-I00,
Ministerio de Ciencia, Innovación y Universidades.
The mobility grant BEFPI/2018/025 from Generalitat Valenciana has allowed the author to perform a research stay of three months (March-May 2018) at the Dipartimento di Matematica
e Informatica “U. Dini” (DIMAI) of Università di Firenze (Italy). The author has also been
granted with a Borsa Ferran Sunyer i Balaguer for a research stay at Università di Firenze in
April 2019. / Ortiz Sotomayor, VM. (2019). Conjugacy classes and factorised groups [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/125710 / Compendio
|
7 |
Triple generations of the Lyons sporadic simple groupMotalane, Malebogo John 03 1900 (has links)
The Lyons group denoted by Ly is a Sporadic Simple Group of order
51765179004000000 = 28 37 56 7 11 31 37 67. It(Ly) has a trivial Schur Multiplier
and a trivial Outer Automorphism Group. Its maximal subgroups are G2(5) of order
5859000000 and index 8835156, 3 McL:2 of order 5388768000 and index 9606125,
53 L3(5) of order 46500000 and index 1113229656, 2 A11 of order 29916800 and index
1296826875, 51+4
+ :4S6 of order 9000000 and index 5751686556, 35:(2 M11) of order
3849120 and index 13448575000, 32+4:2 A5 D8 of order 699840 and index 73967162500,
67:22 of order 1474 and index 35118846000000 and 37:18 of order 666 and index
77725494000000.
Its existence was suggested by Richard Lyons. Lyons characterized its order as
the unique possible order of any nite simple group where the centralizer of some
involution is isomorphic to the nontrivial central extension of the alternating group
of degree 11 by the cyclic group of order 2. Sims proved the existence of this group
and its uniqueness using permutations and machine calculations.
In this dissertation, we compute the (p; q; t)-generations of the Lyons group for dis-
tinct primes p, q and t which divide the order of Ly such that p < q < t. For
computations, we made use of the Computer Algebra System GAP / Mathematical Sciences / M.Sc. (Mathematics)
|
8 |
Problème inverse de Galois : critère de rigiditéAmalega Bitondo, François 08 1900 (has links)
Dans ce mémoire, on étudie les extensions galoisiennes finies de C(x). On y démontre le théorème d'existence de Riemann. Les notions de rigidité faible, rigidité et rationalité y sont développées. On y obtient le critère de rigidité qui permet de réaliser certains groupes comme groupes de Galois sur Q. Plusieurs exemples de types de ramification sont construis. / In this master thesis we study finite Galois extensions of C(x). We prove Riemann existence theorem. The notions of rigidity, weak rigidity, and rationality are developed. We obtain the rigidity criterion which enable us to realise some groups as Galois groups over Q. Many examples of ramification types are constructed.
|
9 |
Triple generations of the Lyons sporadic simple groupMotalane, Malebogo John 03 1900 (has links)
The Lyons group denoted by Ly is a Sporadic Simple Group of order
51765179004000000 = 28 37 56 7 11 31 37 67. It(Ly) has a trivial Schur Multiplier
and a trivial Outer Automorphism Group. Its maximal subgroups are G2(5) of order
5859000000 and index 8835156, 3 McL:2 of order 5388768000 and index 9606125,
53 L3(5) of order 46500000 and index 1113229656, 2 A11 of order 29916800 and index
1296826875, 51+4
+ :4S6 of order 9000000 and index 5751686556, 35:(2 M11) of order
3849120 and index 13448575000, 32+4:2 A5 D8 of order 699840 and index 73967162500,
67:22 of order 1474 and index 35118846000000 and 37:18 of order 666 and index
77725494000000.
Its existence was suggested by Richard Lyons. Lyons characterized its order as
the unique possible order of any nite simple group where the centralizer of some
involution is isomorphic to the nontrivial central extension of the alternating group
of degree 11 by the cyclic group of order 2. Sims proved the existence of this group
and its uniqueness using permutations and machine calculations.
In this dissertation, we compute the (p; q; t)-generations of the Lyons group for dis-
tinct primes p, q and t which divide the order of Ly such that p < q < t. For
computations, we made use of the Computer Algebra System GAP / Mathematical Sciences / M.Sc. (Mathematics)
|
Page generated in 0.09 seconds