Spelling suggestions: "subject:"conjugated polyelectrolyte"" "subject:"eonjugated polyelectrolyte""
1 |
Biological Sensing and DNA Templated Electronics Using Conjugated PolymersBjörk, Per January 2007 (has links)
Conjugated polymers have been found useful in a wide range of applications such as solar cells, sensor elements and printed electronics, due to their optical and electronic properties. Functionalization with charged side chains has enabled water solubility, resulting in an enhanced interaction with biomolecules. This thesis focus on the emerging research fields, where these conjugated polyelectrolytes (CPEs) are combined with biomolecules for biological sensing and DNA nanowire assembling. CPEs have shown large potential in biomolecular detection where the optical read out is due to the geometrical alternation in the backbone and aggregation state. This thesis focused on transferring the biomolecular detection to a surface of CPEs. The characterization of the CPE layer show that a hydrogel can be formed, and how the layer can undergo geometrical changes upon external stimulus such as pH change. A selective sensor surface can be created by imprinting ssDNA or an antibody in the CPE layer. The discrimination for complementary DNA hybridization and specific antibody interaction can be monitored by surface plasmon resonance or quartz crystal microbalance. We have also taken the step out from the controlled test tube experiments to the complex environment of the cell showing the potential for staining of compartments and structures in live and fixed cell. Depending on the conditions and CPE used, cell nuclei, acidic vesicles and cytoskeleton structure can be visualized. Furthermore, the live staining shows no sign of toxic effect on cultured fibroblasts. CPEs can also be a valuable element when assembling electronics in the true nano regime. I have used DNA as building template due to its attractive size features, with a width of around 2 nm and a length scale in the µm regime, and the inbuilt base-paring recognition elements. This thesis shows how DNA can be decorated with CPEs and stretched on surfaces into a model for aligned semiconducting nanowire geometries. Not only making the template structures is of importance, but also how to place them on the correct surface position, i.e. on electrodes. Strategies for positioning DNA nanowires using transfer printing and surface energy patterning methods have therefore been developed in the thesis. The stretched DNA decorated with CPE also offers a way to further study the molecular binding interaction between the two molecules. Single molecular spectroscopy in combination with polarization has given information of the variation of the CPE binding along a DNA chain.
|
2 |
Syntéza a charakterizace konjugovaných polymerů obsahujících fluorenové a thiofenové jednotky / Synthesis and characterization of conjugated polymers containing fluorene and thiophene unitsBondarev, Dmitrij January 2013 (has links)
This Thesis is devoted to synthesis and characterization of conjugated polymers of three types: (i) copolymers of fluorene-based units with comonomers derived from benzene, anthracene and diphenyloxadiazole; (ii) copolymers combining new thiophene monomers carrying oxadiazole and triazole moieties with various comonomers. Copolymers are designed with the respect to the tuning the optical properties and an improvement in charge transport properties; (iii) polythiophene based polyelectrolytes of two types and the basic characterization of selected physical and optical properties is reported as well as a study of interactions with noble metal nanoparticles. An incorporation of oxadiazole side groups into the fluorene copolymers was followed by the substantial increase in the stability of emission (photoluminescence). Another increase in the emission stability was achieved by the substitution of alkyl side groups on fluorene for the aryl counterparts. Such a change resulted in almost complete suppression of the undesired green emission. Further method was the incorporation of anthracene monomeric units into the main chains which resulted in the best stabilization of emission. An experiment was also made in order to shed some light on the explanation of the mechanism of emission stabilization caused by...
|
3 |
Dyeing of Wool and Silk Fibres with a Conductive Polyelectrolyte and Comparing Their ConductanceAhsen Khan, Muhammad January 2012 (has links)
Polyelectrolytes are conductive polymers because of their ionic side group and PEDOT-S is one of those conductive polyelectrolytes. Previously, recombinant silk fibre has been dyed with PEDOT-S. PEDOT-S showed that it can be dyed with recombinant silk fibre over a very wide range of pH from 11 to 1.7. Previous experiments of dyeing recombinant silk fibre with PEDOT-S has shown that it is a very versatile process and can also be applied on other types of protein-based fibres, and that prompted me to dye wool and silk fibre from Bombyx Mori and make these fibres functionalized. So in this thesis dyeing of wool and silk fibres with PEDOT-S has been carried out. By this bottom-up approach of making an organic polymer electrically conductive and utilising the flexibility of organic polymer, one can integrate it in OLEDs and in smart textiles. In this thesis dyeing of silk and wool fibres with different dyeing pH has been carried out to maximise the exhaustion of dyes on to the fibres to acquire maximum conductance. Then the wool and silk fibres’ conductance and mechanical properties after dyeing were compared. Wool showed better conductance and mechanical properties as compare to silk after being dyed with PEDOT-S. These results helped to propose a model that tells about the interaction between protein-based fibres and polyelectrolytes and gives us better understanding of how these protein-based fibres show certain conductivity at different pH. Results also showed that these conductive fibres can be used further in special purposes and applications. / Program: Magisterutbildning i textilteknologi
|
4 |
DNA chips with conjugated polyelectrolytes as fluorophore in fluorescence amplification modeMagnusson, Karin January 2008 (has links)
The aim of this diploma work is to improve selectivity and sensitivity in DNA-chips by utilizing fluorescence resonance energy transfer (FRET) between conjugated polyelectrolytes (CPEs) and fluorophores. Leclerc and co-workers have presented successful results from studies of super FRET between fluorophore tagged DNA and a CPE during hybridisation of the double strand. Orwar and co-workers have constructed a DNA-chip using standard photo lithography creating a pattern of the hydrophobic photoresist SU-8 and cholesterol tagged DNA (chol-DNA). This diploma work will combine and modify these two ideas to fabricate a improved DNA-chip. Immobilizing of DNA onto surface has been done by using soft lithography. Hydrophobic pattern arises from the poly(dimethylsiloxane) (PDMS) stamp. The hydrophobic pattern will attract chol-DNA that is adsorbed to the chip. Different sets of fluorophores are covalently bound to the DNA and adding CPEs to the complex will make FRET occur between CPE and bound fluorophore. We will here show that the specificity in DNA hybridization by using PDMS patterning was high. FRET clearly occurred, especially with the CPEs as donor to the fluorophore Cy5. The intensity of FRET was higher when the fluorophore and the CPE were conjugated to the same DNA strand. The largest difference in FRET intensity between double stranded and single stranded complexes was observed with the CPE tPOMT. Super FRET has been observed but not yet fully proved. The FRET efficiency was lower with the fluorophore Alexa350 as donor compared to the Cy5/CPE complex. Most of the energy transferred from Alexa350 was extinguished by quenching.
|
5 |
DNA chips with conjugated polyelectrolytes as fluorophore in fluorescence amplification modeMagnusson, Karin January 2008 (has links)
<p>The aim of this diploma work is to improve selectivity and sensitivity in DNA-chips by utilizing fluorescence resonance energy transfer (FRET) between conjugated polyelectrolytes (CPEs) and fluorophores.</p><p>Leclerc and co-workers have presented successful results from studies of super FRET between fluorophore tagged DNA and a CPE during hybridisation of the double strand. Orwar and co-workers have constructed a DNA-chip using standard photo lithography creating a pattern of the hydrophobic photoresist SU-8 and cholesterol tagged DNA (chol-DNA). This diploma work will combine and modify these two ideas to fabricate a improved DNA-chip.</p><p>Immobilizing of DNA onto surface has been done by using soft lithography. Hydrophobic pattern arises from the poly(dimethylsiloxane) (PDMS) stamp. The hydrophobic pattern will attract chol-DNA that is adsorbed to the chip. Different sets of fluorophores are covalently bound to the DNA and adding CPEs to the complex will make FRET occur between CPE and bound fluorophore.</p><p>We will here show that the specificity in DNA hybridization by using PDMS patterning was high. FRET clearly occurred, especially with the CPEs as donor to the fluorophore Cy5. The intensity of FRET was higher when the fluorophore and the CPE were conjugated to the same DNA strand. The largest difference in FRET intensity between double stranded and single stranded complexes was observed with the CPE tPOMT. Super FRET has been observed but not yet fully proved. The FRET efficiency was lower with the fluorophore Alexa350 as donor compared to the Cy5/CPE complex. Most of the energy transferred from Alexa350 was extinguished by quenching.</p>
|
6 |
Responsive polymers for optical sensing applicationsInal, Sahika January 2013 (has links)
LCST-type synthetic thermoresponsive polymers can reversibly respond to certain stimuli in aqueous media with a massive change of their physical state. When fluorophores, that are sensitive to such changes, are incorporated into the polymeric structure, the response can be translated into a fluorescence signal. Based on this idea, this thesis presents sensing schemes which transduce the stimuli-induced variations in the solubility of polymer chains with covalently-bound fluorophores into a well-detectable fluorescence output. Benefiting from the principles of different photophysical phenomena, i.e. of fluorescence resonance energy transfer and solvatochromism, such fluorescent copolymers enabled monitoring of stimuli such as the solution temperature and ionic strength, but also of association/disassociation mechanisms with other macromolecules or of biochemical binding events through remarkable changes in their fluorescence properties. For instance, an aqueous ratiometric dual sensor for temperature and salts was developed, relying on the delicate supramolecular assembly of a thermoresponsive copolymer with a thiophene-based conjugated polyelectrolyte. Alternatively, by taking advantage of the sensitivity of solvatochromic fluorophores, an increase in solution temperature or the presence of analytes was signaled as an enhancement of the fluorescence intensity. A simultaneous use of the sensitivity of chains towards the temperature and a specific antibody allowed monitoring of more complex phenomena such as competitive binding of analytes.
The use of different thermoresponsive polymers, namely poly(N-isopropylacrylamide) and poly(meth)acrylates bearing oligo(ethylene glycol) side chains, revealed that the responsive polymers differed widely in their ability to perform a particular sensing function. In order to address questions regarding the impact of the chemical structure of the host polymer on the sensing performance, the macromolecular assembly behavior below and above the phase transition temperature was evaluated by a combination of fluorescence and light scattering methods. It was found that although the temperature-triggered changes in the macroscopic absorption characteristics were similar for these polymers, properties such as the degree of hydration or the extent of interchain aggregations differed substantially. Therefore, in addition to the demonstration of strategies for fluorescence-based sensing with thermoresponsive polymers, this work highlights the role of the chemical structure of the two popular thermoresponsive polymers on the fluorescence response. The results are fundamentally important for the rational choice of polymeric materials for a specific sensing strategy. / Als Reaktion auf bestimmte äußere Stimuli ändern bestimmte wasserlösliche Polymere reversibel ihren physikalischen Zustand. Dieser Vorgang kann mithilfe von Fluorophoren, die in die Polymerstrukturen eingebaut werden und deren Fluoreszenzeigenschaften vom Polymer¬zustand abhängen, detektiert werden. Diese Idee ist der Ausgangspunkt der vorliegenden Arbeit, die sich damit beschäftigt, wie äußerlich induzierte Änderungen der Löslichkeit solcher Polymere mit kovalent gebundenen Fluorophoren in Wasser in ein deutlich messbares Fluoreszenzsignal übersetzt werden können. Dazu werden photophysikalische Phänomene wie Fluoreszenz-Resonanz¬energie¬transfer und Solvatochromie ausgenutzt. In Kombination mit einem responsiven Polymergerüst wird es möglich, verschiedene Stimuli wie Lösungs¬temperatur oder Ionenstärke, oder auch Assoziation-Dissoziation Reaktionen mit anderen Makromolekülen oder biochemische Bindungs¬reaktionen über die Änderung von Fluorezenz¬farbe bzw. –Intensität autonom mit bloßem Auge zu detektieren. Unter anderem wurde ein wässriger ratiometrischer Temperatur- und Salzsensor entwickelt, der auf der komplexen supramolekularen Struktur eines thermoresponsiven Copolymers und eines thiophenbasierten konjugierten Polyelektrolyts beruht. Die Anbindung solvato¬chromer Fluorophore erlaubte den empfindlichen Nachweis einer Temperatur¬änderung oder des Vorhandenseins von Analyten. Komplexere Phänomene wie das kompetitive Anbinden von Analyten ließen sich hochempfindlich steuern und auslesen, indem gleichzeitig die Sensitivität dieser Polymeren gegenüber der Temperatur und spezifischen Antikörpern ausgenutzt wurde.
Überraschenderweise wiesen die hier untersuchten thermoresponsiven Polymere wie poly-N-isopropylacrylamid (pNIPAm) oder poly-Oligoethylenglykolmethacrylate (pOEGMA) große Unterschiede bzgl. ihrer responsiven optischen Eigenschaften auf. Dies erforderte eine ausführliche Charakterisierung des Fluoreszenz- und Aggregationsverhaltens, unter- und oberhalb des Phasenübergangs, im Bezug auf die chemische Struktur. Ein Ergebnis war, dass alle drei Polymertypen sehr ähnliche temperaturabhängige makroskopische Absorptionseigenschaften aufweisen, während sich die Eigenschaften auf molekularer Ebene, wie der Hydratisierungsgrad oder die intermolekulare Polymerkettenaggregation, bei diesen Polymeren sehr unterschiedlich. Diese Arbeit zeigt damit anhand zweier sehr etablierter thermoresponsiver Polymere, nämlich pNIPAm und pOEGMA, das die chemische Struktur entscheidend für den Einsatz dieser Polymere in fluoreszenzbasierten Sensoren ist. Diese Ergebnisse haben große Bedeutung für die gezielte Entwicklung von Polymermaterialien für fluoreszenzbasierte Assays.
|
7 |
Towards new π-conjugated systems for photovoltaic applications / Vers de nouveaux systèmes π-conjugués pour des applications photovoltaïquesChevrier, Michèle 15 September 2016 (has links)
Le développement des énergies renouvelables est aujourd’hui devenu un enjeu mondial majeur comme alternative aux énergies fossiles dans la production d'énergie. Parmi elles, l’énergie solaire est considérée comme la source la plus prometteuse, permettant de couvrir l’ensemble des besoins énergétiques liés à l’activité humaine. Les cellules photovoltaïques les plus performantes aujourd’hui, entre 16 et 18 % en modules, sont composées de silicium, un semi-conducteur inorganique. Cependant, leur coût de production élevé a nécessité le développement de matériaux alternatifs moins couteux. Parmi les voies explorées, les cellules solaires organiques ont émergé comme une alternative prometteuse pour produire l’électricité à faible coût. Le sujet de cette thèse s’intègre dans ce contexte de recherche. Deux types de cellules solaires ont été étudiés : les cellules à hétérojonction en volume (BHJ) et sensibilisées au colorant (DSSCs). Le courant photogénéré repose généralement (i) dans les cellules BHJ, sur le transfert entre de charge entre un polymère donneur et un accepteur d’électrons (fullerène), tels que le couple poly(3-hexyl)thiophène (P3HT) et [6,6]-phényl-C61-butanoate de méthyle (PCBM), et (ii) dans les DSSCs, la sensibilisation de la surface d’un semi-conducteur inorganique tel que l’oxyde de titane par un colorant et la présence d’un électrolyte, jouant le rôle de médiateur redox. Bien qu’ayant atteint des rendements de photoconversion respectifs de 5 et 13 %, ces cellules nécessitent des améliorations pour une commercialisation à grande échelle. Tout d’abord, les performances des cellules BHJ à base de P3HT sont considérablement limitées par sa faible absorption, ne couvrant pas la globalité du spectre solaire. Afin de palier ce problème, nous avons combiné le P3HT avec des chromophores, i.e. des porphyrines, ayant une absorption plus étendue. Ensuite, pour assurer une meilleure extraction des charges au sein du dispositif, une couche interfaciale cathodique à base de polyélectrolytes pi-conjugués a été ajoutée. Enfin, des colorants extraits de la biomasse ont été préparés afin de remplacer les colorants coûteux à base de ruthénium. En outre, les électrolytes liquides étant volatils et corrosifs, ce qui limite considérablement la stabilité des DSSCs, des électrolytes solides à base de polymères ont été étudiés comme alternative. / Among renewable energies, the sunlight has by far the highest theoretical potential to meet the worldwide need in energy. Photovoltaic devices are thus currently the subject of intense research for low-cost conversion of sunlight into electrical power. In particular, organic photovoltaics have emerged as an interesting alternative to produce electricity due to their low manufacturing cost compared to silicon solar cells, their mechanical flexibility and the versatility of the possible chemical structures. In this dissertation, we focused our research on the development of new organic pi-conjugated materials for organic solar cells applications. Two types of solar cells have been studied during this work: bulk heterojunction and dye-sensitized solar cells. The charge transfer leading to the photocurrent is usually based on (i) a polymer donor and a fullerene acceptor in BHJ solar cells, such as the widely studied poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) materials and (ii) a metal oxide (titanium oxide) sensitized with a dye and an electrolyte in DSSCs. Despite power conversion efficiencies have reached 5 and 13 % respectively for these two types of devices, they still display several drawbacks that limit their commercialization. P3HT displays a narrow absorption of the solar spectrum thus limiting the conversion efficiency. To overcome this limitation, we combined P3HT with chromophores, i.e. porphyrins, having an extending absorption. Then, to ensure better charge transfer and extraction within the device, a cathode interfacial layer based on cationic pi-conjugated polyelectrolytes was added. Finally, dyes extracted from the biomass (chlorophyll a derivatives) were synthesized to replace the expensive ruthenium dyes in DSSCs. Since liquid electrolytes are volatile and corrosive, which considerably limit the DSSCs stability, solid polymer electrolytes were also developed as an alternative.
|
Page generated in 0.0775 seconds