• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regularidade dos conjuntos de Julia

Silva, Paulo Ricardo da January 1990 (has links)
In this work we present a sistematic exposition of a result due to R. Maiíé and L. Rocha, who proved that the Julia set of a rational map of the Riemann sphere is uniíormly perfect. We start with necessary basic concepts and dose with a proof of a result of C. Pommerenke which allows us to condude the Dirichlet regularity of the Julia set.
2

Regularidade dos conjuntos de Julia

Silva, Paulo Ricardo da January 1990 (has links)
In this work we present a sistematic exposition of a result due to R. Maiíé and L. Rocha, who proved that the Julia set of a rational map of the Riemann sphere is uniíormly perfect. We start with necessary basic concepts and dose with a proof of a result of C. Pommerenke which allows us to condude the Dirichlet regularity of the Julia set.
3

Regularidade dos conjuntos de Julia

Silva, Paulo Ricardo da January 1990 (has links)
In this work we present a sistematic exposition of a result due to R. Maiíé and L. Rocha, who proved that the Julia set of a rational map of the Riemann sphere is uniíormly perfect. We start with necessary basic concepts and dose with a proof of a result of C. Pommerenke which allows us to condude the Dirichlet regularity of the Julia set.
4

Propriedades topológicas dos conjuntos de Julia

Uceda, Rafael Asmat [UNESP] 14 March 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:15Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-03-14Bitstream added on 2014-06-13T20:07:47Z : No. of bitstreams: 1 uceda_rma_me_sjrp.pdf: 517062 bytes, checksum: aff28312f73d1b91ddb23dde4fa63a1f (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Seja f : C ! C uma fun»c~ao polinomial. O conjunto de Julia, J(f), associado a f, é o conjunto dos números complexos z onde a família ffng dos iterados de f não é normal em z. Neste trabalho, estudaremos varias propriedades topológicas de J(f). Calcularemos também a dimensão de Hausdor® de J(fc), onde fc(z) = z2+c e jcj é grande, e estudaremos as propriedades do conjunto de Mandelbrot associado a fc, isto é, o conjunto M dos números complexos pelos quais J(fc)é conexo. Em particular provaremos o Teorema de Douady-Hubard que menciona que M é conexo. / Let f : C ! C be a polynomial function. The Julia set, J(f) associated to f, is the set of the complex numbers z where the family ffng of iterates of f is not normal at z. In this work, we will study many topological properties of J(f). We will compute the Hausdor® dimension of J(fc) too, where fc(z) = z2 + c and jcj is large, and we will study the properties of the Mandelbrot set associated to fc, that is, the set M of the complex numbers by which J(fc) is connected. In particular we will prove the Theorem of Douady-Hubard that mentions the connectedness of M.
5

Algumas Propriedades Geométricas do Conjunto de Julia / Some Geometric Properties of the Julia Set

Liberato, Serginei José do Carmo 24 February 2014 (has links)
Made available in DSpace on 2015-03-26T13:45:36Z (GMT). No. of bitstreams: 1 texto completo.pdf: 680613 bytes, checksum: d49992ace83b65d0a439badc8cc946f3 (MD5) Previous issue date: 2014-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we study some geometric properties of Julia sets and filled-in Julia sets of polynomials. In addition, we seek a form of measure the Julia set, for this we use the Hausdorff measure and determine a lower bound to the Hausdorff dimension of the Julia set. / Neste trabalho estudamos algumas propriedades geométricas do Conjunto de Julia e do e Conjunto de Julia Cheio. Além disso, procuramos uma forma de mensurar o conjunto de Julia, para isso utilizamos a medida de Hausdorff e determinamos uma cota inferior para a dimensão de Hausdorff do conjunto de Julia.
6

Máquina de somar, conjuntos de Julia e fractais de Rauzy

Uceda, Rafael Asmat [UNESP] 15 March 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:22Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-03-15Bitstream added on 2014-06-13T21:04:11Z : No. of bitstreams: 1 uceda_ra_dr_sjrp.pdf: 905373 bytes, checksum: c2f0ae66c1c9b9621f826e692c6d9b4c (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Em 2000, Killeen e Taylor definiram a máquina de somar estocástica em base 2. Eles mostraram que o espectro do op erador de transi cão (agindo em l∞( N)), associado a essa máquina, e igual ao conjunto de Julia cheio de uma função quadrática. Nesse trabalho, estudamos outras propriedades espectrais e topológicass da máquina de Killeen e Taylor, e também das suas extensões à l∞(Z) e a outras bases não constantes. Esse estudo envolve conjuntos de Julia de funções quadráticas e também conjuntos de Julia cheios de endomor smos de C2 . Finalmente estudamos algumas propriedades aritméticas e topológicas de uma classe de fractais de Rauzy. Em particular estudamos o azulejamento periódico do plano complexo C induzido por eles. / In 2000, Killeen and Taylor de ned the sto hastic adding machine in base 2. They proved that the sp ectrum of the transition op erator (acting in l∞(N )) asso ciated to this machine is equal to the lled Julia set of a quadratic polynomial map. In this work, we study other sp ectral and top ological prop erties of Killeen and Taylor machine, and also of its extensions to l∞( Z) and to other non constant bases. This study envolves Julia sets of quadratic maps and also lled Julia sets of endomorphisms of C2 . Finally we study some arithmetical and topological prop erties of a class of Rauzy fractals. In particular we study the p erio dictiling of complex plane C induced by this class.

Page generated in 0.0816 seconds