• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computer simulation of hollowcore concrete flooring systems exposed to fire

Chang, Jeremy John January 2007 (has links)
Multi-storey buildings with precast hollowcore concrete floor systems are very common in New Zealand and in many other countries, but the structural behaviour of such systems under fire exposure is not easy to predict because of the complex geometry, composite construction, and a wide range of possible support conditions. The 2006 version of the New Zealand Concrete Standard NZS3101 introduces new details for connection of hollowcore floor units to reinforced concrete supporting beams to improve seismic performance, but the fire performance of the new connection systems is unknown. Currently available methods for simulating fire performance of hollowcore slabs are not suitable for design purposes. Therefore, a simple yet sufficiently accurate simulation method needs to be developed. This study was carried out using a proposed simulation method to investigate the fire performance of hollowcore floor slabs with different connection details between the hollowcore units and their reinforced concrete supporting beams conforming to NZS3101. The proposed simulation method is examined on the platform of SAFIR, a non-linear finite element program that includes both thermal and structural analysis. The proposed simulation method was validated using available experimental results from a limited number of tests. It does not take account of shear and anchorage failures or spalling effects, so designers should consult other studies for this behaviour of hollowcore concrete flooring systems. By using the proposed simulation scheme in SAFIR, it is investigated whether the tensile membrane action established through beams parallel to the hollowcore units and different floor aspect ratios will enhance the fire resistance of hollowcore concrete flooring systems. From the simulation results it is concluded that rigid connections at both the ends and the sides of the hollowcore flooring systems to the supporting beams provide better fire resistance than rotationally flexible connections, and the fire resistance of hollowcore flooring systems can be increased by using stiffer supporting beams at the end of the slabs and also by decreasing the spacing between the beams parallel to the hollowcore units.
2

A comparison of double clip angle shear connections to shear tab connections in industrial applications

Martin, Brandi Nichole January 1900 (has links)
Master of Science / Department of Architectural Engineering / Kimberly W. Kramer / In structural steel connection design, simple shear connections are one of the most common connection types utilized. The industry, especially from the side of the engineer, tends to lean toward using Double Clip Angle Connections as the default standard for simple shear connections. A double clip angle connection is a connection consisting of two angles transferring the shear forces from one member to the next either through bolts or welds. The design of Double Clip Angle Connections is efficient and the connections themselves are easy to fabricate. However, benefits to utilizing other types of shear connections exist. Many of these benefits are seen in the fabrication shop or during erection and construction. This is especially true of single shear plate or shear tab connections when applied to open structure design. Shear tab connections consist of a single plate that transfers the shear forces from one member to the next with bolts or with welds. The design of shear tab connections can be a more involved process than the design of double clip angles. Sometimes the shear plate or shear tab has to be longer than is typical. This is called an extended shear plate connection. These extended shear plates can bring other variables into the design that typically don’t occur with Double Clip Angle Connections such as bending of the plate or the need for multiple bolt columns. However, with proper planning and detailing, the benefits and savings experienced in the fabrication or construction phase may outweigh what can be seen as a more laborious design task. The purpose of this report is to identify the possible benefits achieved in using each of these connections, highlight the differences in the design approach for each, and use a study model to compare the outcome of using one connection over another in the design of a typical open structure. Double clip angles are typically the most efficient approach when speed of design and simplicity of fabrication are the desired outcomes. However, shear plate or shear tab connections have the potential to provide safer erection alternatives and materials savings if used in appropriate ways and with the right applications.
3

An investigation into the feasibility of hybrid concrete construction in South Africa

Jurgens, Christiaan Johannes 03 1900 (has links)
Thesis (MScEng (Civil Engineering))--Stellenbosch University, 2008. / Introduction South Africa is currently experiencing a significant increase in infrastructure investment. Forecasts by BMI-BRSCU have shown that the building and construction industry is expected to grow considerably to 2010, before languishing slightly to 2015. This growth will be driven in particular by investment in non-residential building (41% growth) and construction (73% growth) activities. Even beyond 2015 however, the demand will still be high on the construction industry to provide infrastructure for South Africa’s growing population. South Africa is also facing a serious shortage of engineers, technicians and other skilled workers in the construction industry. This places high demands on designers and contractors to provide services and to realise projects in ever-reducing time periods and at less cost. These conditions have made it increasingly difficult to maintain the required quality of construction in an industry where mistakes can lead to disastrous consequences. Recent advances in structural materials, structural systems and the way in which projects are handled, now enables a new look at the possibilities of combining pre-fabrication with on site work. This method, known as Hybrid Concrete Construction (HCC), has the potential to revolutionize the South African construction industry if applied correctly. Local research into this technique is however required and it is the aim of this thesis to draw attention to this subject. Key Findings Hybrid Concrete Construction (HCC) can be applied to any structural project, it will however not necessarily be successful. A structure needs to be adapted from the very start to suit a particular construction method. This ensures that all the advantages of the selected construction method may be achieved. Adapting a structure to a different construction method requires a mutual understanding and commitment from all project participants, including the architect, engineer, contractor and client. HCC also requires a certain degree of repetition in a project to be financially viable. A theoretical cost exercise was performed where only the material and erection costs were considered. In this exercise, HCC was found to be slightly less expensive than other construction methods for the Office Building of more than 10 storeys. HCC was also found to be significantly faster than other construction methods for the Office Building of more than 3 storeys. The time calculation was however based on the simplified time estimates from one source. Because of HCC’s shorter estimated construction period, the client can expect to earn revenue from a much earlier date. This decreases the relative cost of a HCC project. This advantage, however, needs to be quantified for chosen South African projects. On-site safety is still an important issue with HCC projects. Labourers are not accustomed to this construction method and it may be necessary to alter current skill development programs to include a crane safety course. The training of qualified riggers and crane operators should receive priority if HCC is to develop in South Africa. This preliminary investigation has shown that Hybrid Concrete Construction (HCC) can be feasible for the South African market. Further investigation is however required to determine the parameters for which HCC would be the preferred construction method. Recommendations Based on the findings and conclusions of this investigation, the following recommendations are made. The following actions should be undertaken by individual South African companies: · Develop relationships with external project partners · Train competent riggers and crane operators The South African concrete industry should invest in the following actions: · Invest in mass-producing precast concrete facilities · Develop a central database of South African projects with information on time, costs, project concepts and layouts to be used as a guideline for decision making · Develop local guidelines for the production and application of self compacting concrete · Compile guidelines for the design and construction of HCC and precast concrete construction in South Africa · Develop a local hidden corbel type connection to its full potential
4

Improved Connections for Blast-Resistant Curtain Walls

Nasseralshariati, Ehsan 01 September 2023 (has links)
Curtain walls provide exterior façade to modern buildings. When subjected to blast shock waves, curtain walls may suffer significant damage, potentially causing serious injuries and casualties to building occupants. Protective films, laminated glass and strengthening of mullions and transoms are used to protect curtain wall components against blast loads. Limited research is available on blast protection of curtain wall components. On the other hand, connections of curtain wall mullions with the supporting substrate, as well as mullion-transom connections form potentially vulnerable locations under blast loads. Research on these connections is lacking in the literature. Therefore, a comprehensive research project has been undertaken in this thesis to address the behavior, analysis, and design of curtain wall connections, both between the mullions and supporting concrete slabs/beams and the mullions and transoms. The research project consists of three phases: i) Experimental research using the University of Ottawa Shock Tube as blast simulator, ii) Numerical investigation based on three-dimensional finite element method (FEM) using LS-DYNA, and iii) Non-linear dynamic analysis of curtain wall systems based on a single-degree-of-freedom (SDOF) to develop a connection design procedure. The experimental phase consisted of tests of three full-size curtain walls mounted on steel HSS sections of the Shock Tube to investigate mullion-to-transom connections and nine single mullions connected to concrete beams to investigate mullion-to-concrete substrate connection. The single mullions either represented floor-to-floor mullions or continuous mullions over the supporting slab. They were connected to concrete beams (representing floor slabs) by means of brackets, which provided high degree of rotational restraints and full translational restraints or connected through damping materials (springs or HRD rubber pads), which allowed translational movements as they dampened the effects of the shock wave. The numerical investigation involved FEM analysis and modeling of all the test specimens. The first step involved the validation of numerical models against test data. The analysis was then extended to conduct a parametric investigation to cover cases that have not been covered in the experiments. This resulted in the investigation of six different design parameters used in connection design. The numerical outcomes illustrated the importance of blast effects on connection design parameters, support reactions, curtain wall response, force and stress distributions on curtain wall components. The information gathered through experimental and numerical research on connection performance led to the formulation of a connection design procedure. Single-degree-of-freedom (SDOF) dynamic analysis technique was adopted to curtain wall analysis as a tool to compute connection design forces. Both the Uniform Facilities Criteria (UFC) charted solution (manual calculations) and two computer software developed at the University of Ottawa (RC-Blast and CW-Blast) were used to conduct SDOF analysis to validate the procedure against experimental and numerical results before they were recommended as design tools. Finally, the details of connection design are provided for different types of connections.
5

Design and construction preferences for connections in the precast concrete industry of South Africa

Mostert, Louwrens Hubert 12 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Precast concrete has been used for decades in the construction industry, locally as well as internationally. Rapid urban development and the need for shorter construction periods for building and infrastructure projects have however encouraged more use of precast concrete construction. The improved speed of construction, high quality and less labour requirements that precast offers makes it an effective type of construction method for modern development. The utilization of various precast concrete systems has been frequently used in the international construction industry, making it a very popular construction method. It was however found that one of the major drawbacks or concerns with the use of precast concrete is the connections between the precast elements. In-situ construction does not have this problem, because it is designed to a monolithic structure or building. It was identified that if the connections in precast buildings or structures are designed or constructed in an insufficient way, it can lead to severe structural problems and even failure. This highlights the importance the design and construction of precast concrete connections have on the overall stability, strength and robustness of the structure. Precast concrete buildings are not merely separate precast elements, connected together to eventually form the same principals of in-situ construction. Precast concrete and connection design is considered to be a specialist field and requires the sufficient expertise and knowledge to understand the structural system and all its different aspects. The precast connection’s function is not merely to transfer loads, but also to develop continuity and ensure monolithic behaviour of the entire precast concrete structure (Englekirk 2003). The most important or desirable structural functions of precast connections are; (i) direct transfer of loads (load paths and flow or forces), (ii) develop structural continuity and integrity, (iii) distribution of concentrated loads, (iv) allow for movements and unintended restraints and lastly to (v) ensure efficient rigidity and robustness for the connection. It can be seen that there is many factors that contribute to the overall design and construction phases of precast concrete connections. The aim of this study is to identify and investigate aspects that influence the design and construction of precast concrete connections. This study will mainly focus on precast concrete and precast connection preferences of participants in the South African construction industry. During this study, industry participants (contractors and consultants) were asked to identify certain aspects and concerns associated with precast concrete and precast connection construction. These answers were used to develop guidelines and preferences that can be used by industry participants to improvise and effectively manage the precast construction, mainly focussing on the connections between the precast elements. / AFRIKAANSE OPSOMMING: Voorafvervaardigde beton word al vir dekades gebruik in die konstruksiebedryf, plaaslik sowel as internasionaal. Vinnige stedelike ontwikkeling en die behoefte vir korter konstruksie tydperke vir die struktuur en infrastruktuur projekte het egter die gebruik en implementasie van voorafvervaardigde beton konstruksie laat toeneem. Die verbeterde spoed van die konstruksie proses, 'n hoë gehalte produk en minder arbeid vereistes wat voorafvervaardiging bied maak dit dus 'n effektiewe tipe konstruksie metode vir moderne ontwikkelings. Die benutting van verskeie voorafvervaardigde beton sisteme en elemente word reeds herhaaldelik gebruik in die internasionale konstruksiebedryf, wat dit vervolglik ʼn baie populêre en effektiewe sisteem maak. Dit is egter bevind dat een van die groot struikelblokke of probleme met die gebruik van voorafvervaardigde beton is die verbindings tussen die voorafvervaardigde elemente. In-situ beton konstruksie het dus nie hierdie probleem nie, want dit word ontwerp om 'n monolitiese beton struktuur of gebou te vorm. Dit was immers geïdentifiseer dat as die verbindings in ʼn voorafvervaardigde gebou of struktuur, ontwerp word deur ʼn ontoereikende manier, dit kan lei tot ernstige strukturele probleme en selfs strukturele faling. Dit beklemtoon dus die belangrikheid wat die ontwerp en konstruksie proses van voorafvervaardigde beton verbindings het op die algehele stabiliteit, sterkte en robuustheid van die struktuur. Voorafvervaardigde beton geboue en strukture kan nie slegs beskou word as aparte voorafvervaardigde elemente wat met mekaar verbind word om eventueel dieselfde beginsels van insitu konstruksie te vorm nie. Voorafvervaardigde beton en verbinding ontwerp word beskou as 'n spesialis veld en vereis dat die ontwerper die nodige kundigheid en kennis van die strukturele stelsel en al sy verskillende aspekte verstaan. Voorafvervaardigde beton verbindings se funksie is nie net om toegepaste kragte oor te dra nie, maar ook om strukturele kontinuïteit te ontwikkel en te verseker dat monolitiese gedrag gehandhaaf word vir die hele voorafvervaardigde beton struktuur (Englekirk 2003). Die mees belangrike strukturele funksies van voorafvervaardigde beton verbindings sluit die volgende in; (i) verseker direkte oordrag van toegepaste kragte (vloei van kragte), (ii) ontwikkeling van strukturele kontinuïteit en integriteit, (iii) die verspreiding van puntbelastings, (iv) moet voorsiening maak vir die bewegings in die voorafvervaardigde element en konneksie self en laastens (v) verskaf doeltreffende rigiditeit en robuustheid vir die konneksie sone. Dus kan daar afgelei word dat daar baie faktore is wat bydra tot die algehele ontwerp en konstruksie fases van voorafvervaardigde beton verbindings. Die doel van hierdie studie is om aspekte te identifiseer en te ondersoek wat die ontwerp en konstruksie van aspekte beton verbindings wel beïnvloed. Die studie sal hoofsaaklik fokus op voorafvervaardigde beton en verbindings voorkeure van persone in die Suid-Afrikaanse konstruksiebedryf. Tydens die studie was persone in die industrie (kontrakteurs en konsultante) ook gevra om sekere aspekte en kwellings wat verband hou met voorafvervaardigde beton asook die verbindings te identifiseer. Die antwoorde wat verkry was uit die industrie deelnemers kan toepaslik gebruik om word riglyne en voorkeure op te stel wat vervolglik gebruik en toegepas kan word in die konstruksie bedryf van Suid Afrika. Die riglyne kan effektief gebruik word om voorafvervaardigde beton asook die verbindings te verbeter en persone in die konstruksie bedryf in te lig oor voorkeure en toepassings van hierdie metode.
6

DESIGN AND BEHAVIOR OF STEEL-PLATE COMPOSITE (SC) WALL TO REINFORCED CONCRETE (RC) WALL MECHANICAL CONNECTION

Hassan Sagheer Anwar (14160276) 29 November 2022 (has links)
<p>In safety-related nuclear structures, steel-plate composite (SC) walls are often used in combination with reinforced concrete (RC) walls or foundations. The design demands need to be transferred between the two different structural systems through appropriate connections without connection failure, which is often associated with brittle failure mode. This study presents a design procedure developed for mechanical connections between SC and RC walls. This procedure implements the full-strength connection design approach as per Specifications for Safety-Related Steel Structures for Nuclear Facilities, AISC N690-18, which requires connections to be stronger than the weaker of the connected walls. The study also presents the results from experimental and numerical investigations conducted to verify the structural performance of the full-strength SC wall-to-RC wall mechanical connection.</p> <p>The experimental program involved testing six mechanical connections comprising four full-scale and two scaled specimens. The four specimens subjected to out-of-plane moment (OOPM) and out-of-plane shear (OOPV) represented a unit cell of a typical wall in a nuclear facility. The remaining two specimens subjected to in-plane shear (IPV) were scaled (1:3) to facilitate testing using the existing loading setup. Two specimens were tested for each loading scenario. The two specimens per loading case were differentiated by longitudinal rebar-to-baseplate connection plans: coupler (C) and double nut (DN). The performance, strength, ductility, and failure mode of the proposed mechanical connection were evaluated based on the experimental observations.</p> <p>The observed governing failure mode of all test specimens was either RC wall flexural yielding or RC wall shear failure. The connection region steel plates (tie plates, wing plates, and baseplates) remained within their elastic range until failure ensuring energy dissipation away from the connection region. Additionally, the wing plates and baseplates strains remained comparatively lower than the tie plate strain values. This was attributed to the contribution of concrete during the force transfer between the two structural elements indicating that the proposed connection design procedure is suitable and conservative for SC wall-to-RC wall mechanical connections.</p> <p>Three-dimensional (3D) finite element models (FEM) were developed and benchmarked against the experimental data to gain an additional insight into the connection behavior. Parametric studies were conducted to compensate for the limited experimental database and evaluate the influence of design parameters such as wall thickness and RC wall longitudinal reinforcement layers on the performance of the designed mechanical connection. Numerically predicted results compared favorably with experimental observations. The recommended design procedure is intended to help designers consider mechanically connecting SC-RC walls where non-contact lap splicing is not feasible and in an attempt to utilize the potential for accelerated construction time and enhanced structural performance of SC walls.</p> <p><br></p>
7

Buckling-Restrained Braced Frame Connection Design and Testing

Coy, Bradly B. 19 July 2007 (has links) (PDF)
As typically designed, the beam-column-brace connections of buckling-restrained braced steel frames have undesirable failure modes that compromise the integrity and performance of the frames and are costly to repair. To decrease the time and resources needed to repair the frames following an earthquake, a new connection design was developed that attempts to confine yielding to replaceable frame components. The design incorporates a gap in the beam beyond the edge of the beam-gusset weld that acts as a hinge and reduces moment forces transferred to the connection; it is bridged by splice plates that are bolted to the beam top flanges. The splice plates and buckling-restrained braces are the only frame components that are expected to yield. To investigate the performance of the proposed connection design, a prototype bay was designed and two test specimens were fabricated and tested. Each specimen represented a corner of the prototype braced bay and consisted of a beam, column, gusset plate, brace core extension assembly, splice plates, and lateral bracing angles. Both standard design procedures and newly developed criteria were used to design the connection. In preparation for testing, a method was developed for estimating the hysteretic response of a buckling-restrained brace. By using this method to program an actuator, the specimens could be tested without using actual braces, resulting in a significant reduction in testing cost. Testing was conducted using two 600 kip actuators; the first followed a static loading protocol with a maximum design drift of 6.5%, and the second replicated the prototype BRB's response. The tests yielded promising results: both specimens withstood the maximum displacements and avoided yielding in the beams, columns, and gusset plates; yielding did occur in the splice plates and BRB core extension assembly, as anticipated. Possible limitations in the design may arise under the presence of increased shear loads, concrete floor slabs, or out-of-plane loading. Additional testing is recommended.
8

FIRE DESIGN BY ADVANCED ANALYSIS OF ARCHETYPE STEEL-COMPOSITE STRUCTURE

Nimisha Dilip Jain (19200691) 26 July 2024 (has links)
<p dir="ltr">Fire is an extreme event that can lead to failure of structural components and potentially collapse of the structural system or sub-systems. Currently, there are no comprehensive, research-based methodologies for performance-based fire structural design (PBFSD) of composite wall-to-floor connections subjected to gravity loads and realistic fire scenarios. The existing studies primarily focus on the performance of simple shear connections to steel columns, and lack approaches for structural design of floor systems and their connections to walls (wall-to-floor connections) at elevated temperatures. This study addresses the need for evaluating the performance of composite floor systems and composite wall-to-floor connections under fire loading and developing research-based approaches to conduct performance-based structural design of these systems at elevated temperatures.</p><p dir="ltr">This study aims to give a simpler design method for shear tab and single angle shear connections at elevated temperatures by specifying retention factors for steel yield strength, ultimate strength, bolt material strength, and weld metal strength at elevated temperatures. The connection limit state equations specified in AISC Specifications are modified to incorporate these factors for higher temperatures. Additionally, an archetype building is designed and one floor system is evaluated using Finite Element Analysis (FEA) to assess the robustness of the structure and its resistance to collapse using PBFSD.</p><p dir="ltr">It also discusses the application of fire protection materials for steel members to resist fire scenarios for specified durations. Various fire scenarios, including ventilation-controlled and fuel-controlled fires were evaluated to assess localized behavior at the connection points and the overall behavior of the structural compartment. The FE analyses included various fire scenarios, compartment locations (interior, edge, or middle), and fire protection scenarios (2-hour rating fire protection, or no fire protection on interior beams). The composite floor system is evaluated for a combination of these scenarios under fire and gravity loading.</p><p dir="ltr">Through this study, a comprehensive analysis of the behavior of composite floors systems and associated connections in SpeedCore Wall Systems (C-PSW/CF) under fire loading is achieved.</p>

Page generated in 0.0922 seconds