• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 38
  • 16
  • 14
  • 8
  • 8
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 195
  • 97
  • 68
  • 67
  • 65
  • 62
  • 61
  • 48
  • 44
  • 42
  • 41
  • 38
  • 31
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Vliv rozšíření konsolidačního celku na ekonomickou situaci koncernu / The Impact of The Consolidation on The Economic Situation of The Company

Píšová, Klára January 2019 (has links)
The thesis deals with the issue of consolidated financial statement in a selected holding and in its economic appreciation before the expansion of the consolidated group and after its change. The first part of the thesis includes theoretical knowledge for consolidated financial statement which are subsequently applied in the creation of new consolidated financial statements related to the expansion of the consolidated group. The conclusion of the thesis is dedicted to the comparison of consolidated financial statements.
32

Vliv rozšíření konsolidačního celku na jeho ekonomickou situaci / Effect of Enlargement of Consolidated Group on its Economy

Valášková, Lucie January 2020 (has links)
This master‘s thesis deals with the issue of consolidation of financial statements. At first, the goals and methods of processing are set. The next part is devoted to the theoretical background, which is followed by the analytical part. It provides basic information about the selected consolidation group and evaluation of the economic situation before its expansion. This is followed by the valuation of a business interest due to its acquisition in another company and the preparation of new consolidated financial statements. The conclusion of the thesis focuses on the evaluation of the impact of the change in the scope of the consolidation group on the economic situation of the selected group.
33

Vliv rozšíření konsolidačního celku na jeho ekonomickou situaci / Effect of Enlargement of Consolidated Group on its Economy

Ševčíková, Hana January 2020 (has links)
The master's thesis focuses on the expansion of the consolidated group and the impact on economic situation consolidated group due the expansion. Theoretical part of the thesis focuses on consolidated financial statements, company valuation and assessment of the economic situation. In the second part is determined company value and then the company is included to consolidation group by using method of consolidation. After that is assessed the economic impact of the extension group.
34

Analýza výkonnosti skupiny podniků / Performance Analysis of a Group of Companies

Dvorská, Lucie January 2014 (has links)
This thesis analyzes the consolidated financial statements for a selected group of companies, through Saarbruck model and financial analysis. The theoretical part deals with the concepts related to the consolidated financial statements and analyzes used to assess the financial situation of enterprises. The following section is on the practical application of theoretical knowledge to the consolidated financial statements, as well as focusing on the comparison of the financial results achieved by the individual companies and groups of companies as a whole. At the end of this work focuses on the final evaluation of the performance and financial position of the group of companies to which the proposals are processed to changes that could in the future lead to an improvement of their situation.
35

Konsolidovaná účetní závěrka / Consolidated Financial Statements

Tesařová, Kateřina January 2016 (has links)
The master's thesis deals with the issue of the consolidation of financial statements. The first part of thesis, there are explained important terms and methods, which are linked to consolidation. The theoretical information is used for work out a practical part, which includes making new consolidated financial statements in consortium HOLOUBEK. The new statements are related to change in consolidation group.
36

Un couvent dans un village de bois les Soeurs de la Charité de Québec sur l'île d'Anticosti, 1925-1973

Piché, Geneviève January 2010 (has links)
En 1925, les Soeurs de la Charité de Québec s'installent à Port-Merrier, sur l'île d'Anticosti, et fondent un couvent et un pensionnat, afin de dispenser un enseignement primaire aux enfants. Anticosti est alors aux mains d'un riche propriétaire français, qui la vendra l'année suivante à une compagnie forestière. De 1926 à 1973, les religieuses poursuivent leur oeuvre, alors que l'île d'Anticosti se destine à l'exploitation forestière. Au gré des événements, leur périple sur cette île les mettra souvent à rude épreuve. Elles seront confrontées à un milieu très différent du leur et devront constamment négocier avec les administrateurs de la compagnie forestière pour assurer la pérennité de leur institution. Ce mémoire de maîtrise porte donc sur l'oeuvre d'une communauté religieuse dans un milieu insulaire dominé par une compagnie forestière. L'étude vise à comprendre les motivations qui ont poussé, d'une part, les Soeurs de la Charité de Québec, d'autre part, les propriétaires successifs de l'île, à vouloir instaurer et maintenir un couvent sur l'île d'Anticosti. Elle se veut également un reflet des relations entres ces différents acteurs, notamment en ce qui concerne la gestion et le fonctionnement du couvent. De manière plus générale, ce mémoire révèle une situation particulière, celle d'une communauté religieuse établie dans un"village de bois", et lève le voile sur les relations employées/employeurs qui se tissent entre les protagonistes.
37

Expression of mannanases in fermentative yeasts.

Fouche, Nicolette 03 1900 (has links)
Thesis (MSc (Microbiology))--University of Stellenbosch, 2009. / ENGLISH ABSTRACT: The search for a cost-effective, environmentally friendly replacement for fossil fuels resulted in bio-ethanol production receiving a lot of attention. Lignocellulose, is considered to be the most abundant renewable source on earth, and consists of cellulose, hemicellulose and lignin. Exploitation thereof as a substrate for ethanol production, can serve as solution in producing bio-ethanol as an adequate replacement for fossil fuels. Hemicelluloses, contributing up to a third of the lignocellulosic substrate, consists mainly of xylan and mannan and can be degraded by hemicellulolytic enzymes that are produced by plant cell wall degrading organisms. Galactoglucomannan is the most complex form of mannan and requires a consortium of enzymes for complete hydrolysis. These enzymes include β-mannanase, β-mannosidase, α-galactosidase, β-glucosidase and galactomannan acetylesterases. Saccharomyces cerevisiae is a well-known fermentative organism that has been used in various industrial processes and is able to produce ethanol from hexose sugars. Although this organism is unable to utilize complex lignocellulosic structures, DNA manipulation techniques and recombinant technology can be implemented to overcome this obstacle. Strains of S. cerevisiae pose other shortcomings like hyperglycosylation and therefore other non-conventional yeasts (such as Kluyveromyces lactis) are now also being considered for heterologous protein production. The mannanase gene (manI) of Aspergillus aculeatus was expressed in K. lactis GG799 and S. cerevisiae Y294. K. lactis transformants were stable for two weeks in consecutive subcultures and secreted a Man1 of 55 kDa. The recombinant Man1 displayed an optimum temperature of 70°C and a pH optimum of 5 when produced by K. lactis. Activity levels of about 160 – 180 nkat/ml was obtained after 86 hours of cultivation, which was similar to the activity observed with S. cerevisiae under the same conditions. Disruption of the ku80 gene did not contribute to the stability of the cultures and a heterogeneous culture developed for 10 days of consecutive subculturing. The mannosidase gene (man1) from A. niger and mannanase gene (manI) from A. aculeatus were constitutively expressed in S. cerevisiae Y294 and S. cerevisiae NI-C-D4. The MndA and Man1 proteins appeared as a 140 kDa and 58 kDa species on the SDS-PAGE analysis when expressed in S. cerevisiae Y294, respectively. MndA had an optimum temperature of 50°C and optimum pH 5. Man1 produced by S. cerevisiae Y294 indicated a pH optimum of 6 and temperature optimum of 70°C. The MndA displayed low levels of endomannanase activity and no β-mannosidase activity could be detected. Co-expression of man1 and mndA in either S. cerevisiae Y294 and S. cerevisiae NI-C-D4, resulted in less hydrolysis of galactoglucomannan. An increase in the size of the plasmid generally results in a decrease in the copy number, leading to a decrease in the amount of ManI protein being produced. The co-expression of ManI and MndA could also have resulted in a higher metabolic burden on the cell, hence the amount of ManI are produced. This study confirms that more research should be done on the evaluation of alternative hosts for expression of foreign proteins. Furthermore, producing enzymes cocktails for industrial application should be considered rather than co-expression of various enzymes in one host. / AFRIKAANSE OPSOMMING: ‘n Behoefte na ‘n koste-effektiewe en omgewingsvriendelike vervoer brandstof is besig om toe te neem. Lignosellulose word beskou as die volopste hernubare bron vir biobrandstof en lignosellulose bestaan uit sellulose, hemisellulose en lignien. Die gebruik daarvan vir die produksie van bio-etanol kan ’n voldoende alternatief vir fossielbrandstowwe bied. Verbruik van lignosellulose as bron vir die produksie van biobrandstof bied ’n oplossing vir die energie krises. Hemisellulose vorm ’n derde van lignosellulose substraat en bestaan uit xilaan en mannaan en word deur hemisellolitiese ensieme afgebreek wat algemeen by plantselwand-verterende organismes voorkom. Galaktoglukomannaan is die mees komplekse vorm van mannaan en benodig verskeie ensieme vir volkome hidroliese. Hierdie ensieme sluit in β-mannanase, β-mannosidase, α-galaktosidase, β-glukosidase en galaktomanaan asetielesterases. Saccharomyces cerevisiae is ‘n bekende fermenterende organisme wat gereeld in verskeie industriële prosesse gebruik word en kan etanol van heksose suikers produseer. Die organisme beskik nie oor die vermoë om komplekse polisakkarides wat in lignosellulose voorkom te hidroliseer nie maar. DNS-manipuleringstegnieke en rekombinante tegnologie maak dit egter moontlik die probellm te oorbrug. S. cerevisiae het nogtans tekortkominge soos hiperglikosilering en daarom word ander nie-konvensionele giste (soos Kluyveromyces lactis) tans ook vir die produksie van rekombinante proteine ondersoek. Die mannanase geen (manI) vanaf Aspergillus aculeatus is in K. lactis GG799 en S. cerevisiae Y294 uitgedruk. K. lactis transformante was stabiel vir twee weke in opeenvolgende subkluture en het ‘n Man1 van 55 kDa geproduseer. Die rekombinante Man1 ensiem het ‘n temperatuur optimum van 70°C en pH optimum van 5.0 getoon in K. Lactis. Aktiwiteitsvlakke van 160 – 180 nkat/ml was bereik na 86 uur klutivering, In vergelyking met S. cerevisiae was aktiwiteitsvlakke eenders oor ‘n periode Die disrupsie van die ku80 geen het geen effek op die stabiliteit van die transformante in 10 dae opeenvolgende sub-kulture getoon nie. Die mannosidase geen (mndA) vanaf Aspergillus niger en die mannanase geen (man1) van Aspergillus aculeatus is konstitutief in S. cerevisiae Y294 en S. cerevisiae NI-C-D4 uitgedruk. Uitdrukking van die MndA en Man1 proteïen in S. cerevisiae Y294 het onderskeidelik ‘n 140 kDa en 58 kDa spesie getoon met SDS-PAGE analisering. Die MndA ensiem het ‘n temperatuur optimum van 50°C and pH optimum van 5.0 getoon. Man1 het ‘n pH optimum van 6.0 en ‘n temperatuur optimum van 70°C getoon. MndA het lae hidrolitiese aktiwiteit op galaktoglukomannaan, maar geen β-mannosidase aktiwiteit getoon nie. Wanneer man1 and mndA saam in S. cerevisiae Y294 en S. cerevisiae NI-C-D4 uitgedruk is, het die hidroliese van galaktoglukomannan dramaties afgeneem. ‘n Toename in die grootte van ‘n plasmied veroorsaak dikwels ‘n afname in kopiegetal wat die produksie van ManI verlaag. Die ko-uitdrukking van ManI en MndA kan ook tot ’n hoër metaboliese las lei en dus die laer produksie van ManI. Resultate in hierdie studie wys daarop dat meer navorsing benodig word in die soeke na alternatiewe gashere vir uitdrukking van mannanases. Ensiem mengsels vir industriële toepassings behoort eerder gebruik te word as die ko-ekspressie van verskeie ensieme in ’n enkel gasheer.
38

Val av tillämpningsform för CCCTB : En analys av en obligatorisk respektive frivillig tillämpning och om utsikterna för CCCTB i ljuset av BEPS-projektet

Wängström, Theodor January 2016 (has links)
No description available.
39

Expression of fungal b-glucosidases in Saccharomyces cerevisiae for enhanced growth on cellobiose

Njokweni, Anathi Perseverence 12 1900 (has links)
Thesis (MSc (Microbiology))--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Bio-fuels have been considered an ideal substitute for fossil fuels due to their availability and renewable nature. Bio-ethanol is currently of great market interest as an alternative fuel with the potential of supplementing petroleum as transportation fuel. Lignocellulosic biomass, a renewable energy source, can be "readily" converted to bio-ethanol. The main impediment in the conversion process is the recalcitrance of the main lignocellulosic components (cellulose, hemicelluloses and lignin) to enzymatic hydrolysis as well as the lack of available low-cost technology. Consolidated Bioprocessing (CBP) is a single process step which offers a cost-effective and economically feasible strategy for bio-ethanol production. The process requires micro-organisms that produce ethanol at high rates and titres. Saccharomyces cerevisiae has potential as a CBP candidate due to its high ethanol yield, robustness in industrial processes, well-developed gene expression system and its safety status. Unfortunately S. cerevisiae does not degrade polysaccharides and therefore requires heterologous expression of cellulases. Genetic engineering of S. cerevisiae for cellulose hydrolysis serves as an important step in yeast strain development for CBP, and serves as a stepping stone for the commercialisation of lignocellulosic bio-ethanol. Although cellulose- utilising S. cerevisiae strains have been constructed, the cellobiose conversion is slow, hampering optimal ethanol production. β-glucosidases have been shown to be the major rate-limiting factors in cellulose saccharification as their activity determines the extent of cellulose hydrolysis, by removing excess cellobiose which causes feed-back inhibition on endoglucanase and cellobiohydrolase activities (Du Plessis et al. 2009;Lynd et al. 2002). Therefore, insufficient supply of β-glucosidase activity is detrimental to CBP and can be addressed by increasing the enzyme supply or using highly active β-glucosidases to enhance cellobiose hydrolysis. In this study, several cellobiose fermenting S. cerevisiae strains were constructed. Extracellular fungal β-glucosidase-encoding genes were successfully expressed in S. cerevisiae under the transcriptional control of the ENO1 (enolase) promoter and terminator sequences. The recombinant enzymes produced were characterised based on pH and temperature optima as well as kinetic parameters. Bio-fuels have been considered an ideal substitute for fossil fuels due to their availability and renewable nature. Bio-ethanol is currently of great market interest as an alternative fuel with the potential of supplementing petroleum as transportation fuel. Lignocellulosic biomass, a renewable energy source, can be „readily‟ converted to bio-ethanol. The main impediment in the conversion process is the recalcitrance of the main lignocellulosic components (cellulose, hemicelluloses and lignin) to enzymatic hydrolysis as well as the lack of available low-cost technology. Consolidated Bioprocessing (CBP) is a single process step which offers a cost-effective and economically feasible strategy for bio-ethanol production. The process requires micro-organisms that produce ethanol at high rates and titres. Saccharomyces cerevisiae has potential as a CBP candidate due to its high ethanol yield, robustness in industrial processes, well-developed gene expression system and its safety status. Unfortunately S. cerevisiae does not degrade polysaccharides and therefore requires heterologous expression of cellulases. Genetic engineering of S. cerevisiae for cellulose hydrolysis serves as an important step in yeast strain development for CBP, and serves as a stepping stone for the commercialisation of lignocellulosic bio-ethanol. Although cellulose- utilising S. cerevisiae strains have been constructed, the cellobiose conversion is slow, hampering optimal ethanol production. β-glucosidases have been shown to be the major rate-limiting factors in cellulose saccharification as their activity determines the extent of cellulose hydrolysis, by removing excess cellobiose which causes feed-back inhibition on endoglucanase and cellobiohydrolase activities (Du Plessis et al. 2009;Lynd et al. 2002). Therefore, insufficient supply of β-glucosidase activity is detrimental to CBP and can be addressed by increasing the enzyme supply or using highly active β-glucosidases to enhance cellobiose hydrolysis. In this study, several cellobiose fermenting S. cerevisiae strains were constructed. Extracellular fungal β-glucosidase-encoding genes were successfully expressed in S. cerevisiae under the transcriptional control of the ENO1 (enolase) promoter and terminator sequences. The recombinant enzymes produced were characterised based on pH and temperature optima as well as kinetic parameters. / AFRIKAANSE OPSOMMING: Biobrandstof word beskou as die ideale plaasvervanger vir fossielbrandstof weens die beskikbaarheid en herwinbare aard daarvan. Bio-etanol wek tans groot mark-verwante belangstelling as alternatiewe brandstof weens die potensiaal om petroleum as vervoerbrandstof aan te vul. Lignosellulose biomassa, 'n hernubare energiebron, kan "maklik" tot bio-etanol omgeskakel word. Die groot struikelblok in die omskakelingsproses is die weerstandbiedendheid van die lignosellulose komponente (sellulose, hemisellulose en lignien) teen ensiematiese hidroliese asook die gebrek aan beskikbaarheid van lae koste tegnologie. Gekonsolideerde Bioprosessering (KBP) is 'n enkel stap proses wat 'n koste-effektiewe en ekonomiesvatbare strategie voorstel vir bio-etanolproduksie. Die proses benodig 'n mikroorganisme wat daartoe instaat is om etanol teen hoë vlakke en tempo te kan produseer. Saccharomyces cerevisiae het potensiaal as 'n KBP kandidaat weens sy hoë vlakke van etanolproduksie, gehardheid in industriële prosesse, goed-ontwikkelde geenuitdrukking sisteme en veiligheidstatus. Ongelukkig kan S. cerevisiae nie polisakkariede afbreek nie en benodig derhalwe heteroloë uitdrukking van sellulases. Die genetiese manipulering van S. cerevisiae vir sellulose hidroliese dien as 'n belangrike stap in gisrasontwikkeling vir KBP en dien as 'n “stepping stone” vir die kommersialisasie van lignosellulose bio-etanol. Alhoewel sellulose-benuttende S. cerevisiae rasse reeds gekonstrueer is, is sellulose omskakeling stadig en belemmer dit optimale etanolproduksie. 'n Hoogs aktiewe glukosidase word derhalwe benodig om die hidroliese van sellobiose te versnel. Die studie behels die konstruksie van verskeie sellobiose-fermenterende S. cerevisiae rasse. Ektrasellulêre, fungiese -glukosidase-koderende gene was suksesvol in S. cerevisiae uitgedruk onderhewig aan die transkripsionele beheer van die ENO1 (enulase) promoter en termineerder DNS-volgordes. Die geproduseerde, rekombinante ensieme is gekarakteriseer op grond van optimale pH en temperatuur, asook kinetiese eienskappe. Die intrasellulêre benutting van sellobiose is 'n ideale benadering tot sellobiose hidroliese siende dat dit die risiko van kontaminasie verminder wat veroorsaak word deur die glukose wat vrygestel word in die ekstrasellulêre omgewing. Tog beskik S. cerevisiae nie oor 'n vervoer meganisme om sellobiose in die sel in te bring nie. Derhalwe is die intrasellulêre Phanaerochaete chrysosporium -glukosidase-koderende geen suksesvol saam met die Kluyveromyces lactis laktose permease uitgedruk. Alle rekombinante rasse is vir groei op sellobiose geevalueer. Die mees belowendste esktrasellulêre -glukosidase-produserende S. cerevisiae Y294[Pccbgl1] ras toon 'n aktiwiteit van 3.85 nkat.g-1, 1.85 keer meer die aktiwiteit van die S. cerevisiae Y294[SFB] ras (2.07 nkat.g-1). S. cerevisiae Y294[Pccbgl1] het ook 'n maksimum groei tempo van 0.25 h-1 onder anearobiese kondisies in vergelyking met die 0.064 h-1 van S. cerevisiae Y294[iPcbglB+lac12] toon. Onder anaërobe kondisies het S. cerevisiae Y294[Pccbgl1] 7.95 g.l-1 sellobiose verbruik en 4.05 g. l-1 etanol geproduseer oor 'n tydperk van 116 uur, terwyl S. cerevisiae Y294[iPcbglB+lac12] 0.41 g.l-1 sellobiose verbruik het en 0.21 g.l-1 etanol oor dieselfde tydperk geproduseer het. Die rekombinante rasse wat in die studie gekonstrueer is, is 'n belangrike stap in die ontwikkeling van S. cerevisiae as KBP sellulolitiese gis. / The South African National Research Institute (SANERI) for financial support
40

Cellulose hydrolysis and metabolism in the mesophilic, cellulolytic bacterium, Clostridium termitidis CT1112

Munir, Rifat January 2015 (has links)
Consolidated bioprocessing (CBP) provides a cost effective cellulose processing strategy, in which enzyme production, substrate hydrolysis, and fermentation of sugars to ethanol are all carried out in a single step by microorganisms. For industrial-scale bioethanol production, CBP-enabling microbes must be able to both efficiently degrade lignocellulosic material to fermentable sugars and synthesize bioethanol with high yields. Microbes with these properties have so far not been identified. Developing naturally occurring cellulolytic isolates with CBP-relevant properties requires a comprehensive understanding of their lignocellulosic hydrolysis mechanism and metabolism. In my quest to find a suitable organism for potential use in CBP, I took to investigate the under-characterized anaerobic bacterium, Clostridium termitidis strain CT1112. C. termitidis produces fermentative hydrogen and ethanol from a variety of lignocellulose derived substrates. I sought to investigate the metabolism of C. termitidis on different substrates and the mechanisms of substrate hydrolysis using a combination of microscopy, comparative bioinformatics, and ‘Omic (transcriptomic and proteomic) analyses. Comparative bioinformatics analyses revealed higher numbers of genes encoding carbohydrate active enzymes (CAZymes) with the potential to hydrolyze a wide-range of carbohydrates, and ‘Omic analyses were used to quantify the levels of expression of CAZymes, including endoglucanases, exoglucanases, hemicellulases and cellulosomal components. While cellulases and cellulosome components were highly expressed on cellulose, xylanases and glucosidases were predominantly expressed on pentoses, and chitinases (as well as cellobiose phosphorylases) were significantly up-regulated on cellobiose. In addition to growth on xylan, the simultaneous consumption of two important lignocellulose constituents, cellobiose and xylose was also observed. The ability to metabolize both hexose and pentose sugars is a highly desirable feature of CBP-relevant organisms. Metabolic profiles in association with ‘Omics analyses showed that hexoses and pentoses are consumed via the Embden-Meyerhof-Parnas and Pentose-Phosphate pathways, respectively, and that the genome content and expression profiles dictate end-product synthesis patterns. Genes and gene-products of enzymes in central metabolism and end-product synthesis were detected in high abundance under all substrate conditions, regardless of the amounts of end-products synthesized. The capabilities described thus far, identifies C. termitidis as a strain of interest for CBP. Further studies are, however, required for its development in to an industry-ready strain for biofuel production. / February 2016

Page generated in 0.0635 seconds