• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermo-Mechanical Behaviour of Two Reconstituted Clays

Ghahremannejad, Behrooz January 2003 (has links)
The effect of temperature on soil behaviour has been the subject of many studies in recent years due to an increasing number of projects related to the application of high temperature to soil. One example is the construction of facilities for the disposal of hot high level nuclear waste canisters (150-200C) several hundred meters underground in the clay formations. Despite this, the effects and mechanism by which temperature affects the soil properties and behaviour are not fully known. A limited amount of reliable experimental data, technological difficulties and experimental methods employed by different researchers could have contributed to the uncertainties surrounding the soil behaviour at elevated temperature. Also several thermo-mechanical models have been developed for soil behaviour, but their validity needs to be examined by reliable experimental data. In this research, efforts have been made to improve the experimental techniques. Direct displacement measuring devices have been successfully used for the first time to measure axial and lateral displacements of clay samples during tests at various temperatures. The thermo mechanical behaviour of two reconstituted clays has been investigated by performing triaxial and permeability tests at elevated temperature. Undrained and drained triaxial tests were carried out on normally consolidated and over consolidated samples of M44 clay and Kaolin C1C under different effective stresses, and at temperatures between 22C and 100C. Permeability tests were carried out on samples of M44 clay at temperatures between 22C and 50C. The effects of temperature on permeability, volume change, pore pressure development, shear strength and stiffness, stress strain response and critical state parameters for different consolidation histories have been investigated by comparing the results at various temperatures. The results are also compared with the predictions of two models. It has been found that at elevated temperature the shear strength, friction angle and initial small strain stiffness reduce whereas permeability increases. The slope of the swelling line in the v-p� plane has been found to reduce with temperature. The slope of the isotropic normal consolidation line (INCL) and critical state line (CSL) in the v-p� plane have been observed to be independent of temperature, but both the INCL and the CSL shift downwards to lower locations as temperature increases. The deformations during drained cooling and re heating cycles have been found to be elastic and to simply reflect the expansivity of the soils solid particles. The thermal volume changes during undrained heating have been observed to be direct results of the thermal expansion of water and clay particles. The internal displacement measuring devices have been found to produce reliable data for the variation of strains at elevated temperature.
2

Thermo-Mechanical Behaviour of Two Reconstituted Clays

Ghahremannejad, Behrooz January 2003 (has links)
The effect of temperature on soil behaviour has been the subject of many studies in recent years due to an increasing number of projects related to the application of high temperature to soil. One example is the construction of facilities for the disposal of hot high level nuclear waste canisters (150-200C) several hundred meters underground in the clay formations. Despite this, the effects and mechanism by which temperature affects the soil properties and behaviour are not fully known. A limited amount of reliable experimental data, technological difficulties and experimental methods employed by different researchers could have contributed to the uncertainties surrounding the soil behaviour at elevated temperature. Also several thermo-mechanical models have been developed for soil behaviour, but their validity needs to be examined by reliable experimental data. In this research, efforts have been made to improve the experimental techniques. Direct displacement measuring devices have been successfully used for the first time to measure axial and lateral displacements of clay samples during tests at various temperatures. The thermo mechanical behaviour of two reconstituted clays has been investigated by performing triaxial and permeability tests at elevated temperature. Undrained and drained triaxial tests were carried out on normally consolidated and over consolidated samples of M44 clay and Kaolin C1C under different effective stresses, and at temperatures between 22C and 100C. Permeability tests were carried out on samples of M44 clay at temperatures between 22C and 50C. The effects of temperature on permeability, volume change, pore pressure development, shear strength and stiffness, stress strain response and critical state parameters for different consolidation histories have been investigated by comparing the results at various temperatures. The results are also compared with the predictions of two models. It has been found that at elevated temperature the shear strength, friction angle and initial small strain stiffness reduce whereas permeability increases. The slope of the swelling line in the v-p� plane has been found to reduce with temperature. The slope of the isotropic normal consolidation line (INCL) and critical state line (CSL) in the v-p� plane have been observed to be independent of temperature, but both the INCL and the CSL shift downwards to lower locations as temperature increases. The deformations during drained cooling and re heating cycles have been found to be elastic and to simply reflect the expansivity of the soils solid particles. The thermal volume changes during undrained heating have been observed to be direct results of the thermal expansion of water and clay particles. The internal displacement measuring devices have been found to produce reliable data for the variation of strains at elevated temperature.
3

The hippocampal dependence of long-term declarative memory

Alvarez Svahn, Rodrigo January 2015 (has links)
Investigations into the neural correlates of memory have found the hippocampus to be a crucial structure for long-term declarative memories, but the exact nature of this contribution remains under debate. This paper covers three theories concerned with how the hippocampus is involved in long-term memory, namely the Standard Consolidation Model, the Multiple-Trace Theory, and the Distributed Reinstatement Theory. According to the Standard Consolidation Model, long-term declarative memories (both episodic and semantic) are dependent on the hippocampus for a limited time during which the memories undergo a process of consolidation, after which they become dependent on the neocortex. In contrast, the Multiple-Trace Theory argues that detailed and context-specific episodic (but not semantic) memories remain dependent on the hippocampus indefinitely. While both the aforementioned theories posit that memories are initially dependent on the hippocampus, the Distributed Reinstatement Theory does not. Advocates of this theory propose that several memory systems compete for the encoding of a memory, and that the hippocampus usually is the dominant system. However, it is also suggested that the other (unspecified) memory systems can overcome the hippocampal dominance through extensive and distributed learning sessions. In this paper, findings from both human and rodent studies focusing on the hippocampus are reviewed and used to evaluate the claims made by each theory on a systems level.
4

Simulation of forming, compaction and consolidation of thermoplastic composites based on solid shell elements / Simulations de la mise en forme, la compaction et la consolidation de composites thermoplastiques basées sur des éléments finis solides-coques

Xiong, Hu 28 September 2017 (has links)
Les composites thermoplastiques préimprégnés suscitent un intérêt croissant pour l'industrie automobile grâce à leurs excellentes propriétés mécaniques et leur procédé de fabrication rapide. Dans ce contexte, la modélisation et la simulation numérique des procédées de mise en forme de pièces composites à géométries complexes sont nécessaires pour prédire et optimiser les pratiques de fabrication. Cette thèse est consacrée à la modélisation et à la simulation du comportement de consolidation des composites thermoplastiques préimprégnés lors du processus de mise en forme. Un nouvel élément solide-coque prismatique à sept nœuds est proposé: six situés aux sommets et le septième situé au centre. Le champ de cisaillement transverse est supposé afin de réprimer le verrouillage de cisaillement transversal. La méthode de déformation renforcée supposée par addition d'un DOF de déplacement supplémentaire depuis le nœud central et un schéma d'intégration réduit sont combinées offrant un champ de déformation linéaire le long de la direction d'épaisseur pour contourner le verrouillage. De plus, une procédure de stabilisation de sablier est employée afin de corriger le défaut de rang de l'élément pour le pincement. Cet élément utilise un modèle de relaxation viscoélastique pour modéliser le comportement tridimensionnel de composites thermoplastiques préimprégnés avec effet de consolidation. Un modèle de contact intime est également utilisé pour prédire l'évolution de la consolidation et la microstructure du vide présente au sein du préimprégné. A l’aide d’une loi hyperélastique, plusieurs simulations ont été conduites en combinant le nouvel élément fini et les modèles de consolidation. La comparaison des résultats de simulation avec les essais expérimentaux montre l'efficacité de l’élément solide-coque face aux problèmes de déformations dans le plan et en flexion, mais également pour l'analyse du comportement de consolidation. De plus, le degré de contact intime fournit le degré de consolidation par conditions de procédé appliqué, ce qui est essentiel pour l'apparition de défauts dans la pièce finale de composite. / As the pre-impregnated thermoplastic composites have recently attached increasing interest in the automotive industry for their excellent mechanical properties and their rapid cycle manufacturing process, modelling and numerical simulations of forming processes for composites parts with complex geometry is necessary to predict and optimize manufacturing practices. This thesis is devoted to modelling and simulation of the consolidation behavior during thermoplastic prepreg composites forming process. A new seven-node prismatic solid-shell element is proposed: six located at the apexes and the seventh sited at the center. A shear stain field is assumed to subdue transverse shear locking, the enhanced assumed strain method by addition of an extra displacement DOF from the central node and a reduced integration scheme are combined offering a linear varying strain field along the thickness direction to circumvent thickness locking, and an hourglass stabilization procedure is employed in order to correct the element’s rank deficiency for pinching. This element permits the modelling of three-dimensional constitutive behavior of thermoplastic prepreg with the consolidation effect, which is modelled by a viscoelastic relaxation model. An intimate contact model is employed to predict the evolution of the consolidation which permits the microstructure prediction of void presented through the prepreg. Within a hyperelastic framework, several simulation tests are launched by combining the new developed finite element and the consolidation models. The comparison with conventional shell element and experimental results shows the efficiency of the proposed solid-shell element not only dealing with the in-plan deformation and bending deformation problems, but also in analyzation of the consolidation behavior, and the degree of intimate contact provides the level of consolidation by applied process conditions, which is essential for the appearance of defects in final composite part.

Page generated in 0.1216 seconds