• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Filtering Approaches for Inequality Constrained Parameter Estimation

Yang, Xiongtan Unknown Date
No description available.
2

State Estimation with Unconventional and Networked Measurements

Duan, Zhansheng 14 May 2010 (has links)
This dissertation consists of two main parts. One is about state estimation with two types of unconventional measurements and the other is about two types of network-induced state estimation problems. The two types of unconventional measurements considered are noise-free measurements and set measurements. State estimation with them has numerous real supports. For state estimation with noisy and noise-free measurements, two sequential forms of the batch linear minimum mean-squared error (LMMSE) estimator are obtained to reduce the computational complexity. Inspired by the estimation with quantized measurements developed by Curry [28], under a Gaussian assumption, the minimum mean-squared error (MMSE) state estimator with point measurements and set measurements of any shape is proposed by discretizing continuous set measurements. State estimation under constraints, which are special cases of the more general framework, has some interesting properties. It is found that under certain conditions, although constraints are indispensable in the evolution of the state, update by treating them as measurements is redundant in filtering. The two types of network-induced estimation problems considered are optimal state estimation in the presence of multiple packet dropouts and optimal distributed estimation fusion with transformed data. An alternative form of LMMSE estimation in the presence of multiple packet dropouts, which can overcome the shortcomings of two existing ones, is proposed first. Then under a Gaussian assumption, the MMSE estimation is also obtained based on a hard decision by comparing the measurements at two consecutive time instants. It is pointed out that if this comparison is legitimate, our simple MMSE solution largely nullifies existing work on this problem. By taking linear transformation of the raw measurements received by each sensor, two optimal distributed fusion algorithms are proposed. In terms of optimality, communication and computational requirements, three nice properties make them attractive.
3

Essays in Microeconometrics

Martin, Stephan 23 August 2023 (has links)
Diese Dissertation umfasst drei Aufsätze zu verschiedenen Themen aus dem Bereich der Mikroökonometrie. Das erste Kapitel ist eine gemeinsame Arbeit mit Christoph Breunig und umfasst semi/nichtparametrische Regressionsmodelle, in denen die abhängige Variable einen nicht-klassischen Messfehler aufweist. Es werden Bedingungen erarbeitet, unter denen die Regressionsfunktion bis auf eine Normalisierung identifiziert werden kann. Zur Schätzung wird ein neuer Schätzer entwickelt, bei dem eine Rang-basierte Kriteriumsfunktion über einen sieve-Raum optimiert wird und dessen Konvergenzrate hergeleitet. Das zweite Kapitel beschäftigt sich mit der Schätzung von bedingten Dichtefunktionen von zufälligen Koeffizienten in linearen Regressionsmodellen. Es wird ein zweistufiges Schätzverfahren entwickelt, in dem zunächst eine Approximation der bedingten Dichte Koeffizienten hergeleitet wird. In einem weiteren Schritt können diese Funktionen mit generischen Methoden des maschinellen Lernens geschätzt werden. Des Weiteren wird auch die Konvergenzrate des Schätzers in der L2-Norm hergeleitet sowie dessen punktweise, asymptotische Normalität. Im dritten Kapitel wird ein neuer und einfach umsetzbarer Ansatz zur Schätzung semi(nicht)parametrischer diskreter Entscheidungsmodelle, unter Berücksichtigung von Restriktionen auf die funktionalen Parameter des Modells, vorgestellt. Die untersuchten Modelle weisen funktionale Parameter auf, die bestimmte funktionale Formen aufweisen. Zentraler Teil der Arbeit ist die Entwicklung eines GLS-Schätzers über einen geeigneten sieve-Raum, der aus I- und B-Spline Basisfunktionen unter geeigneten Restriktionen basiert. Es wird gezeigt, dass sich die Berücksichtigung der Restriktionen auf die funktionale Form positiv auf die Konvergenzrate des Schätzers in einer schwachen Norm auswirkt und so notwendige Bedingungen für die asymptotische Normalität semiparametrischer Schätzer einfacher erreichen lässt. / This dissertation comprises three individual papers on various topics in microeconometrics. In the first chapter, which is joint work with Christoph Breunig, we study a semi-/nonparametric regression model with a general form of nonclassical measurement error in the outcome variable. We provide conditions under which the regression function is identifiable under appropriate normalizations. We propose a novel sieve rank estimator for the regression function and establish its rate of convergence. The second chapter deals with the estimation of conditional random coefficient models. Here I propose a two-stage sieve estimation procedure. First, a closed-form sieve approximation of the conditional RC density is derived. Second, sieve coefficients are estimated with generic machine learning procedures and under appropriate sample splitting rules. I derive the $L_2$-convergence rate of the conditional RC-density estimator and also provide a result on pointwise asymptotic normality. The third chapter presents a novel and simple approach to estimating a class of semi(non)parametric discrete choice models imposing shape constraints on the infinite-dimensional and unknown link function parameter. I study multiple-index discrete choice models where the link function is known to be bounded between zero and one and is (partly) monotonic. In the paper I present an easy to implement and computationally efficient sieve GLS estimation approach using a sieve space of constrained I- and B-spline basis functions. The estimator is shown to be consistent and that imposing shape constraints speeds up the convergence rate of the estimator in a weak Fisher-like norm. The asymptotic normality of relevant smooth functionals of model parameters is derived and I illustrate that necessary assumptions are milder if shape constraints are imposed.

Page generated in 0.1359 seconds