Spelling suggestions: "subject:"constrained models"" "subject:"onstrained models""
1 |
Phenomenological structure for large deviation principle in time-series statistics / 時系列統計における大偏差原理の現象論的構造Nemoto, Takahiro 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18783号 / 理博第4041号 / 新制||理||1582(附属図書館) / 31734 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 佐々 真一, 准教授 篠本 滋, 准教授 武末 真二 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
2 |
Transport Models with Constrained Dynamics : Heterogeneous Flow and Intermittency / Modèes de transport avec dynamiques contraintes : écoulement hétérogène et intermittenceTurci, Francesco 25 June 2012 (has links)
Quand le mouvement de particules sous l'action d'un forçage extérieur est restreint par des mécanismes d'exclusion ou de blocage, des corrélations spatio-temporelles non triviales peuvent être observées, dans une dynamique caractérisé par des hétérogénéités spatiales et grandes fluctuations dans le temps.Dans cette thèse, nous étudions deux exemples d'un tel type de mouvement, en prenant en considération deux processus d'exclusion sur des réseaux discrètes en 2d et en 1d.Le premier modèle est inspiré par les mécanismes de relaxation lents observés dans le cisaillement ou le forçage de systèmes colloïdaux ou granulaires: pour des densités élevées, en augmentant le forçage la viscosité peut croitre énormément. Nous expliquons le mécanisme de blocage à grandes densités comme conséquence de l'existence simultanée de régions bloquées et mobiles dans le système, et nous déterminons la signature d'une telle dynamique par le moyen de la thermodynamique des histoires. Nous mesurons aussi l'extension spatiale des structures hétérogènes et fournissons un modèle phénoménologique reliant les propriétés microscopiques de la dynamique au comportement macroscopique de l'écoulement.Le deuxième modèle consiste en un processus d'exclusion en une dimension, incluant les effets dus à la présence structurelle d'un défaut dynamique localisé. Inspirés par la complexité et la richesse du processus de translation du ARN messager, nous proposons un nouveau modèle pour la dynamique de particules dont le mouvement est affecté par des modification stochastiques et structurelles de leur conditions de transport. Nous fournissons une description complète du modèle, avec la caractérisation de tous les régimes dynamiques possibles et une explication quantitative des profils macroscopiques du courant. / When the motion of particles driven by external forces is restricted by exclusion mechanisms or bottlenecks, non-trivial space-time correlations in their motion may be observed, giving rise to a dynamics which involves spatial heterogeneities and large fluctuations in time.Here we study two examples of such kind of motion, considering two exclusion processes on discrete lattices in 2d and 1d.The first model is inspired by the slow relaxation occurring when stirring or shearing colloidal or granular materials: at high densities (or packing fractions) increasing the external forcing may lead to a strong increase in the viscosity. We explain the blockage dynamics at high density as the coexistence of blocked and mobile regions and we determine the signature of such dynamics with the use of the thermodynamics of histories. We also quantify the spatial extension of such structures and provide a phenomenological model relating the microscopic properties of the dynamics to the macroscopic flow behavior.The second model consists in a one-dimensional exclusion process incorporating a structural, localized, dynamical defect. Inspired by the complexity and richness of mRNA translation, we propose a new model for the dynamics arising when the particles flow is regulated by structural or conformational changes in the transport medium. We provide a complete description of the model, characterizing all the possible dynamical regimes and addressing a quantitative explanation of the macroscopic current profiles.
|
3 |
Probabilistic models in noisy environments : and their application to a visual prosthesis for the blindArchambeau, Cédric 26 September 2005 (has links)
In recent years, probabilistic models have become fundamental techniques in machine learning. They are successfully applied in various engineering problems, such as robotics, biometrics, brain-computer interfaces or artificial vision, and will gain in importance in the near future. This work deals with the difficult, but common situation where the data is, either very noisy, or scarce compared to the complexity of the process to model. We focus on latent variable models, which can be formalized as probabilistic graphical models and learned by the expectation-maximization algorithm or its variants (e.g., variational Bayes).<br>
After having carefully studied a non-exhaustive list of multivariate kernel density estimators, we established that in most applications locally adaptive estimators should be preferred. Unfortunately, these methods are usually sensitive to outliers and have often too many parameters to set. Therefore, we focus on finite mixture models, which do not suffer from these drawbacks provided some structural modifications.<br>
Two questions are central in this dissertation: (i) how to make mixture models robust to noise, i.e. deal efficiently with outliers, and (ii) how to exploit side-channel information, i.e. additional information intrinsic to the data. In order to tackle the first question, we extent the training algorithms of the popular Gaussian mixture models to the Student-t mixture models. the Student-t distribution can be viewed as a heavy-tailed alternative to the Gaussian distribution, the robustness being tuned by an extra parameter, the degrees of freedom. Furthermore, we introduce a new variational Bayesian algorithm for learning Bayesian Student-t mixture models. This algorithm leads to very robust density estimators and clustering. To address the second question, we introduce manifold constrained mixture models. This new technique exploits the information that the data is living on a manifold of lower dimension than the dimension of the feature space. Taking the implicit geometrical data arrangement into account results in better generalization on unseen data.<br>
Finally, we show that the latent variable framework used for learning mixture models can be extended to construct probabilistic regularization networks, such as the Relevance Vector Machines. Subsequently, we make use of these methods in the context of an optic nerve visual prosthesis to restore partial vision to blind people of whom the optic nerve is still functional. Although visual sensations can be induced electrically in the blind's visual field, the coding scheme of the visual information along the visual pathways is poorly known. Therefore, we use probabilistic models to link the stimulation parameters to the features of the visual perceptions. Both black-box and grey-box models are considered. The grey-box models take advantage of the known neurophysiological information and are more instructive to medical doctors and psychologists.<br>
|
4 |
Existence, unicité, approximations de solutions d'équations cinétiques et hyperboliques / Non disponibleBroizat, Damien 11 July 2013 (has links)
Les travaux de cette thèse s’inscrivent dans le contexte des systèmes de particules. Nous considérons différents systèmes physiques, décrits de manière continue, et dont la dynamique est modélisée par des équations aux dérivées partielles décrivant l’évolution temporelle de certaines quantités macroscopiques ou microscopiques, selon l’échelle de description envisagée. Dans une première partie, nous nous intéressons à une équation de type coagulation-fragmentation cinétique. Nous obtenons un résultat d’existence globale en temps, dans le cadre des solutions renormalisées de DiPerna-Lions, pour toute donnée initiale vérifiant les estimations naturelles et possédant une norme L1 et une norme Lp (p > 1) finies. La deuxième partie traite de méthodes de moments. L’objectif de ces méthodes est d’approcher un modèle cinétique par un nombre fini d’équations portant sur des quantités dépendant uniquement de la variable d’espace, et la question est de savoir comment fermer le système obtenu pour obtenir une bonne approximation de la solution du modèle cinétique. Dans un cadre linéaire, nous obtenons une méthode de fermeture explicite conduisant à un résultat de convergence rapide. Enfin, dans une troisième partie, nous travaillons sur la modélisation du trafic routier avec prise en compte de la congestion à l’aide d’un système hyperbolique avec contraintes, issu de la dynamique des gaz sans pression. En modifiant convenablement ce système, nous parvenons à modéliser des phénomènes de trafic routier "multi-voies", comme l’accélération, et la création de zones de vide. Un résultat d’existence et de stabilité des solutions de ce modèle modifié est démontré. / The context of this thesis is particle systems. We deal with different physical systems, described continuously, whose dynamics are modeled by partial differential equations. These equations follow the evolution in time of macroscopic or microscopic quantities, according to scale description. In the first part, we consider a kinetic model for coagulation-fragmentation. We obtain a global existence result, using the notion of DiPerna-Lions renormalized solutions, for initial data satisfying the natural physical bounds, and assumptions of finite L1 and Lp norm (for some p > 1). The second part deals with methods of moments. The aim of these methods is to approximate a kinetic model by a finite number of equations whose unknowns depend only on the space variable. The question is : how to close this system to get a good approximation of the solution of the kinetic model ? In a linear setting, we obtain an explicit method with linear closure relations, which leads to a fast convergence result. In the last part, we work on modeling of traffic jam taking into account the congestion, using a hyperbolic system with constraints, which occurs in the dynamics of a pressureless gas. By suitably modifying this system, we can model "multi-lane" phenomena, like acceleration, and creation of vacuum. An existence and stability result is proved on this new model.
|
Page generated in 0.0616 seconds