• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Volumes finis et solutions renormalisées, applications à des systèmes couplés. / Finite volumes and renormalized solutions : applications to coupled systems

Leclavier, Sarah 12 December 2017 (has links)
On s’intéresse dans cette thèse à montrer que la solution approchée, par la méthode des volumes finis, converge vers la solution renormalisée de problèmes elliptiques ou paraboliques à donnée L1. Dans la première partie nous étudions une équation de convection-diffusion ellliptique à donnée L1. En adaptant la stratégie développée pour les solutions renormaliséesà la méthode des volumes finis, nous montrons que la solution approchée converge vers l’unique solution renormalisée.Dans la deuxième partie nous nous intéressons à un problème parabolique nonlinéaire à donnée L1. En utilisant une version discrète de résultats de compacité classiques, nous montrons que les résultats obtenues dans le cas elliptique restentvrais dans le cas parabolique. Dans la troisième partie nous montrons des résultats similaires pour une équationparabolique doublement non-linéaire à donnée L1. Le caractère doublement nonlinéaire de l’équation crée des difficultés supplémentaires par rapport à la partie précédente, notamment car la règle de dérivation en chaîne ne s’applique pas dansle cas discret. Enfin, dans la quatrième partie, nous utilisons les résultats établis précédemment pour étudier un système de type thermoviscoélasticité. Nous montrons que la solution approchée, obtenue par un schéma éléments finis-volumes finis, converge vers une solution faible-renormalisée du système. / In this thesis we are interested in proving that the approximate solution, obtained by the finite volume method, converges to the unique renormalized solution of elliptic and parabolic equations with L1 data. In the first part we study an elliptic convection-diffusion equation with L1 data. Mixing the strategy developed for renormalized solution and the finite volume method,we prove that the approximate solution converges to the unique renormalized solution. In the second part we investigate a nonlinear parabolic equation with L1 data. Using a discrete version of classical compactness results, we show that the results obtaines previously in the elliptic case hold true in the parabolic case. In the third part we prove similar results for a doubly nonlinear parabolic equation with L1 data. The doubly nonlinear character of the equation makes new difficulties with respect to the previous part, especially since the chain rule formula does not apply in the discrete case. Finaly, in the fourth part we use the results established previously to investigate a system of thermoviscoelasticity kind. We show that the approximate solution,obtaines by finite element-finite volume scheme, converges to a weak-renormalized solution of the system.
2

Existence, unicité, approximations de solutions d'équations cinétiques et hyperboliques / Non disponible

Broizat, Damien 11 July 2013 (has links)
Les travaux de cette thèse s’inscrivent dans le contexte des systèmes de particules. Nous considérons différents systèmes physiques, décrits de manière continue, et dont la dynamique est modélisée par des équations aux dérivées partielles décrivant l’évolution temporelle de certaines quantités macroscopiques ou microscopiques, selon l’échelle de description envisagée. Dans une première partie, nous nous intéressons à une équation de type coagulation-fragmentation cinétique. Nous obtenons un résultat d’existence globale en temps, dans le cadre des solutions renormalisées de DiPerna-Lions, pour toute donnée initiale vérifiant les estimations naturelles et possédant une norme L1 et une norme Lp (p > 1) finies. La deuxième partie traite de méthodes de moments. L’objectif de ces méthodes est d’approcher un modèle cinétique par un nombre fini d’équations portant sur des quantités dépendant uniquement de la variable d’espace, et la question est de savoir comment fermer le système obtenu pour obtenir une bonne approximation de la solution du modèle cinétique. Dans un cadre linéaire, nous obtenons une méthode de fermeture explicite conduisant à un résultat de convergence rapide. Enfin, dans une troisième partie, nous travaillons sur la modélisation du trafic routier avec prise en compte de la congestion à l’aide d’un système hyperbolique avec contraintes, issu de la dynamique des gaz sans pression. En modifiant convenablement ce système, nous parvenons à modéliser des phénomènes de trafic routier "multi-voies", comme l’accélération, et la création de zones de vide. Un résultat d’existence et de stabilité des solutions de ce modèle modifié est démontré. / The context of this thesis is particle systems. We deal with different physical systems, described continuously, whose dynamics are modeled by partial differential equations. These equations follow the evolution in time of macroscopic or microscopic quantities, according to scale description. In the first part, we consider a kinetic model for coagulation-fragmentation. We obtain a global existence result, using the notion of DiPerna-Lions renormalized solutions, for initial data satisfying the natural physical bounds, and assumptions of finite L1 and Lp norm (for some p > 1). The second part deals with methods of moments. The aim of these methods is to approximate a kinetic model by a finite number of equations whose unknowns depend only on the space variable. The question is : how to close this system to get a good approximation of the solution of the kinetic model ? In a linear setting, we obtain an explicit method with linear closure relations, which leads to a fast convergence result. In the last part, we work on modeling of traffic jam taking into account the congestion, using a hyperbolic system with constraints, which occurs in the dynamics of a pressureless gas. By suitably modifying this system, we can model "multi-lane" phenomena, like acceleration, and creation of vacuum. An existence and stability result is proved on this new model.
3

Théorie non linéaire du potentiel et équations quasilinéaires avec données mesures / Nonlinear potential theory and quasilinear equations with measure data

Nguyen, Quoc-Hung 25 September 2014 (has links)
Cette thèse concerne l’existence et la régularité de solutions d’équations non-linéaires elliptiques, d’équations paraboliques et d’équations de Hesse avec mesures, et les critères de l’existence de solutions grandes d’équations elliptiques et paraboliques non-linéaires. / This thesis is concerned to the existence and regularity of solutions to nonlinear elliptic, parabolic and Hessian equations with measure, and criteria for the existence of large solutions to some nonlinear elliptic and parabolic equations.

Page generated in 0.079 seconds