• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • Tagged with
  • 10
  • 10
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uso das características computacionais de regiões paralelas OpenMP para redução do consumo de energia

Moro, Gabriel Bronzatti January 2018 (has links)
Desempenho e consumo energético são requisitos fundamentais em sistemas de computação. Um desafio comumente encontrado é conciliar esses dois aspectos, buscando manter o mesmo desempenho, consumindo cada vez menos energia. Muitas técnicas possibilitam a redução do consumo de energia em aplicações paralelas, mas na maioria das vezes elas envolvem recursos encontrados apenas em processadores modernos ou um conhecimento amplo das características da aplicação e da plataforma alvo. Nesse trabalho propomos uma abordagem em formato de Workflow. Na primeira fase, o comportamento da aplicação paralela é investigado. A partir dessa investigação, a segunda fase realiza a execução da aplicação paralela com diferentes frequências (mínima e máxima) de processador, utilizando a caracterização das regiões, obtida na primeira fase da abordagem. Esse Workflow foi implementado em formato de biblioteca dinâmica, a fim de que ela possa ser utilizada em qualquer aplicação OpenMP. A biblioteca possui suporte as duas fases do Workflow, na primeira fase é gerado um arquivo que descreve as assinaturas comportamentais das regiões paralelas da aplicação. Esse arquivo é posteriormente utilizado na segunda fase, quando a biblioteca vai alterar dinamicamente a frequência de processador. O benchmark Lulesh é utilizado como cenário de testes da biblioteca, com isso o maior ganho obtido é a redução de 1,89% do consumo de energia. Esse ganho acarretou uma sobrecarga de 0,09% no tempo de execução. Ao comparar nossa técnica com a política de troca de frequência adotada pelo governor Ondemand do Sistema Operacional Linux, o ganho de 1,89% é significativo em relação ao benchmark utilizado, pois nele existem regiões paralelas de curta duração, o que impacta negativamente no overhead da operação de troca de frequência. / Performance and energy consumption are fundamental requirements in computer systems. A very frequent challenge is to combine both aspects, searching to keep the high performance computing while consuming less energy. There are a lot of techniques to reduce energy consumption, but in general, they use modern processors resources or they require specific knowledge about application and platform used. In this work, we propose a performance analysis workflow strategy divided into two steps. In the first step, we analyze the parallel application behavior through the use of hardware counters that reflect CPU and memory usage. The goal is to obtain a per-region computing signature. The result of this first step is a configuration file that describes the duration of each region, their hardware counters, and source code identification. The second step runs the parallel application with different frequencies (low or high) according to the characterization obtained in the previous step. The results show a reduction of 1,89% in energy consumption for the Lulesh benchmark with an increase of 0,09% in runtime when we compare our approach against the governor Ondemand of the Linux Operating System.
2

Uso das características computacionais de regiões paralelas OpenMP para redução do consumo de energia

Moro, Gabriel Bronzatti January 2018 (has links)
Desempenho e consumo energético são requisitos fundamentais em sistemas de computação. Um desafio comumente encontrado é conciliar esses dois aspectos, buscando manter o mesmo desempenho, consumindo cada vez menos energia. Muitas técnicas possibilitam a redução do consumo de energia em aplicações paralelas, mas na maioria das vezes elas envolvem recursos encontrados apenas em processadores modernos ou um conhecimento amplo das características da aplicação e da plataforma alvo. Nesse trabalho propomos uma abordagem em formato de Workflow. Na primeira fase, o comportamento da aplicação paralela é investigado. A partir dessa investigação, a segunda fase realiza a execução da aplicação paralela com diferentes frequências (mínima e máxima) de processador, utilizando a caracterização das regiões, obtida na primeira fase da abordagem. Esse Workflow foi implementado em formato de biblioteca dinâmica, a fim de que ela possa ser utilizada em qualquer aplicação OpenMP. A biblioteca possui suporte as duas fases do Workflow, na primeira fase é gerado um arquivo que descreve as assinaturas comportamentais das regiões paralelas da aplicação. Esse arquivo é posteriormente utilizado na segunda fase, quando a biblioteca vai alterar dinamicamente a frequência de processador. O benchmark Lulesh é utilizado como cenário de testes da biblioteca, com isso o maior ganho obtido é a redução de 1,89% do consumo de energia. Esse ganho acarretou uma sobrecarga de 0,09% no tempo de execução. Ao comparar nossa técnica com a política de troca de frequência adotada pelo governor Ondemand do Sistema Operacional Linux, o ganho de 1,89% é significativo em relação ao benchmark utilizado, pois nele existem regiões paralelas de curta duração, o que impacta negativamente no overhead da operação de troca de frequência. / Performance and energy consumption are fundamental requirements in computer systems. A very frequent challenge is to combine both aspects, searching to keep the high performance computing while consuming less energy. There are a lot of techniques to reduce energy consumption, but in general, they use modern processors resources or they require specific knowledge about application and platform used. In this work, we propose a performance analysis workflow strategy divided into two steps. In the first step, we analyze the parallel application behavior through the use of hardware counters that reflect CPU and memory usage. The goal is to obtain a per-region computing signature. The result of this first step is a configuration file that describes the duration of each region, their hardware counters, and source code identification. The second step runs the parallel application with different frequencies (low or high) according to the characterization obtained in the previous step. The results show a reduction of 1,89% in energy consumption for the Lulesh benchmark with an increase of 0,09% in runtime when we compare our approach against the governor Ondemand of the Linux Operating System.
3

Uso das características computacionais de regiões paralelas OpenMP para redução do consumo de energia

Moro, Gabriel Bronzatti January 2018 (has links)
Desempenho e consumo energético são requisitos fundamentais em sistemas de computação. Um desafio comumente encontrado é conciliar esses dois aspectos, buscando manter o mesmo desempenho, consumindo cada vez menos energia. Muitas técnicas possibilitam a redução do consumo de energia em aplicações paralelas, mas na maioria das vezes elas envolvem recursos encontrados apenas em processadores modernos ou um conhecimento amplo das características da aplicação e da plataforma alvo. Nesse trabalho propomos uma abordagem em formato de Workflow. Na primeira fase, o comportamento da aplicação paralela é investigado. A partir dessa investigação, a segunda fase realiza a execução da aplicação paralela com diferentes frequências (mínima e máxima) de processador, utilizando a caracterização das regiões, obtida na primeira fase da abordagem. Esse Workflow foi implementado em formato de biblioteca dinâmica, a fim de que ela possa ser utilizada em qualquer aplicação OpenMP. A biblioteca possui suporte as duas fases do Workflow, na primeira fase é gerado um arquivo que descreve as assinaturas comportamentais das regiões paralelas da aplicação. Esse arquivo é posteriormente utilizado na segunda fase, quando a biblioteca vai alterar dinamicamente a frequência de processador. O benchmark Lulesh é utilizado como cenário de testes da biblioteca, com isso o maior ganho obtido é a redução de 1,89% do consumo de energia. Esse ganho acarretou uma sobrecarga de 0,09% no tempo de execução. Ao comparar nossa técnica com a política de troca de frequência adotada pelo governor Ondemand do Sistema Operacional Linux, o ganho de 1,89% é significativo em relação ao benchmark utilizado, pois nele existem regiões paralelas de curta duração, o que impacta negativamente no overhead da operação de troca de frequência. / Performance and energy consumption are fundamental requirements in computer systems. A very frequent challenge is to combine both aspects, searching to keep the high performance computing while consuming less energy. There are a lot of techniques to reduce energy consumption, but in general, they use modern processors resources or they require specific knowledge about application and platform used. In this work, we propose a performance analysis workflow strategy divided into two steps. In the first step, we analyze the parallel application behavior through the use of hardware counters that reflect CPU and memory usage. The goal is to obtain a per-region computing signature. The result of this first step is a configuration file that describes the duration of each region, their hardware counters, and source code identification. The second step runs the parallel application with different frequencies (low or high) according to the characterization obtained in the previous step. The results show a reduction of 1,89% in energy consumption for the Lulesh benchmark with an increase of 0,09% in runtime when we compare our approach against the governor Ondemand of the Linux Operating System.
4

Alocação dinâmica de tarefas periódicas em NoCs malha com redução do consumo de energia / Energy-aware dynamic allocation of periodic tasks on mesh NoCs

Wronski, Fabio January 2007 (has links)
O objetivo deste trabalho é propor técnicas de alocação dinâmica de tarefas periódicas em MPSoCs homogêneos, com processadores interligados por uma rede emchip do tipo malha, visando redução do consumo de energia do sistema. O foco principal é a definição de uma heurística de alocação, não se considerando protocolos de escalonamento distribuído, uma vez que este ainda é um primeiro estudo para o desenvolvimento de um alocador dinâmico. Na arquitetura alvo utilizada, cada nodo do sistema é dado como autônomo, possuindo seu próprio escalonador EDF. Além disso, são aplicadas técnicas de voltage scaling e power managmenent para redução do consumo de energia durante o escalonamento. Durante a pesquisa do estado da arte, não foram encontradas técnicas de alocação dinâmica em NoCs com restrições temporais e minimização do consumo de energia. Por isso, esse trabalho se concentra em avaliar técnicas de alocação convencionais, como bin-packing e técnicas baseadas em teoria de grafos, no contexto de sistemas embarcados. Dessa forma, o modelo de estimativas do consumo de energia de alocações é baseado no escalonamento de grafos de tarefas, e foi utilizado para implementar a ferramenta Serpens com este propósito. Os grafos de tarefas utilizados nos experimentos são tirados do benchmark E3S – Embedded System Synthesis Benchmark Suite, composto por um conjunto de grafos de tarefas gerados aleatoriamente com a ferramenta TGFF – Task Graph for Free, a partir de dados de aplicações comuns em sistemas embarcados obtidos no EEMBC – Embedded Microprocessor Benchmark Consortium. Entre as heurísticas de bin-packing, Best-Fit, First-Fit e Next-Fit geram alocações com concentração de carga, enquanto a heurística Worst-Fit faz balanceamento de carga. O balanceamento de carga favorece a aplicação de voltage scaling enquanto a concentração favorece o power management. Como o bin-packing não contempla comunicação e dependência entre tarefas em seu modelo, o mesmo foi reformulado para atender esta necessidade. Nos experimentos, a alocação inicial com bin-packing original apresentou perdas de deadlines de até 84 % para a heurística Worst-Fit, passando para perdas em torno de 16% na alocação final, praticamente com o mesmo consumo de energia, após a reformulação do modelo. / The goal of this work is to offer dynamic allocation techniques of periodic tasks in mesh networks-on-chip, aiming to reduce the system power consumption. The main focus is the definition of an allocation heuristic, which does not consider distributed scheduling protocols, since this is the beginning of a study for the development of a dynamic partitioning tool. In the target architecture, each system node is self-contained, that is, the nodes contain their own EDF scheduler. Besides, voltage-scaling and power management techniques are applied for reducing power consumption during the scheduling. To the best of our knowledge, this is the first research effort considering both temporal constraints and power consumption minimization on the dynamic allocation of tasks in a mesh NoC. This way, our concentrates in the evaluation of dynamic allocation techniques, which are generally used in distributed systems, in the embedded systems context, as bin-packing and graph theory based techniques. Therefore, the estimation model for power consumption is based on task graph scheduling, and it was used for implementing the Serpens tool with this purpose. The task graphs used in the experiments were obtained from the E3S benchmark (Embedded System Synthesis Benchmark Suite), which is composed by a set of task graphs randomly generated with the TGFF tool (Task Graph for Free), from common application data obtained from the EEMBC (Embedded Microprocessor Benchmark Consortium). Among the bin-packing heuristics, Best-Fit, First-Fit, and Next-Fit generate allocations with load concentration, while the Worst-Fit heuristics works with load balancing. Load balancing favors the application of voltage scaling, while load concentration favors the utilization of power management. Since the bin-packing model does not consider inter-task communication and dependency, it has been modified to fulfill this need. In the experiments, the initial allocation using the original bin-packing model presented deadline losses of up to 84% for the Worst-Fit heuristic, changing for losses around 16% in the final allocation, after modification of the model, maintaining almost the same power consumption.
5

Alocação dinâmica de tarefas periódicas em NoCs malha com redução do consumo de energia / Energy-aware dynamic allocation of periodic tasks on mesh NoCs

Wronski, Fabio January 2007 (has links)
O objetivo deste trabalho é propor técnicas de alocação dinâmica de tarefas periódicas em MPSoCs homogêneos, com processadores interligados por uma rede emchip do tipo malha, visando redução do consumo de energia do sistema. O foco principal é a definição de uma heurística de alocação, não se considerando protocolos de escalonamento distribuído, uma vez que este ainda é um primeiro estudo para o desenvolvimento de um alocador dinâmico. Na arquitetura alvo utilizada, cada nodo do sistema é dado como autônomo, possuindo seu próprio escalonador EDF. Além disso, são aplicadas técnicas de voltage scaling e power managmenent para redução do consumo de energia durante o escalonamento. Durante a pesquisa do estado da arte, não foram encontradas técnicas de alocação dinâmica em NoCs com restrições temporais e minimização do consumo de energia. Por isso, esse trabalho se concentra em avaliar técnicas de alocação convencionais, como bin-packing e técnicas baseadas em teoria de grafos, no contexto de sistemas embarcados. Dessa forma, o modelo de estimativas do consumo de energia de alocações é baseado no escalonamento de grafos de tarefas, e foi utilizado para implementar a ferramenta Serpens com este propósito. Os grafos de tarefas utilizados nos experimentos são tirados do benchmark E3S – Embedded System Synthesis Benchmark Suite, composto por um conjunto de grafos de tarefas gerados aleatoriamente com a ferramenta TGFF – Task Graph for Free, a partir de dados de aplicações comuns em sistemas embarcados obtidos no EEMBC – Embedded Microprocessor Benchmark Consortium. Entre as heurísticas de bin-packing, Best-Fit, First-Fit e Next-Fit geram alocações com concentração de carga, enquanto a heurística Worst-Fit faz balanceamento de carga. O balanceamento de carga favorece a aplicação de voltage scaling enquanto a concentração favorece o power management. Como o bin-packing não contempla comunicação e dependência entre tarefas em seu modelo, o mesmo foi reformulado para atender esta necessidade. Nos experimentos, a alocação inicial com bin-packing original apresentou perdas de deadlines de até 84 % para a heurística Worst-Fit, passando para perdas em torno de 16% na alocação final, praticamente com o mesmo consumo de energia, após a reformulação do modelo. / The goal of this work is to offer dynamic allocation techniques of periodic tasks in mesh networks-on-chip, aiming to reduce the system power consumption. The main focus is the definition of an allocation heuristic, which does not consider distributed scheduling protocols, since this is the beginning of a study for the development of a dynamic partitioning tool. In the target architecture, each system node is self-contained, that is, the nodes contain their own EDF scheduler. Besides, voltage-scaling and power management techniques are applied for reducing power consumption during the scheduling. To the best of our knowledge, this is the first research effort considering both temporal constraints and power consumption minimization on the dynamic allocation of tasks in a mesh NoC. This way, our concentrates in the evaluation of dynamic allocation techniques, which are generally used in distributed systems, in the embedded systems context, as bin-packing and graph theory based techniques. Therefore, the estimation model for power consumption is based on task graph scheduling, and it was used for implementing the Serpens tool with this purpose. The task graphs used in the experiments were obtained from the E3S benchmark (Embedded System Synthesis Benchmark Suite), which is composed by a set of task graphs randomly generated with the TGFF tool (Task Graph for Free), from common application data obtained from the EEMBC (Embedded Microprocessor Benchmark Consortium). Among the bin-packing heuristics, Best-Fit, First-Fit, and Next-Fit generate allocations with load concentration, while the Worst-Fit heuristics works with load balancing. Load balancing favors the application of voltage scaling, while load concentration favors the utilization of power management. Since the bin-packing model does not consider inter-task communication and dependency, it has been modified to fulfill this need. In the experiments, the initial allocation using the original bin-packing model presented deadline losses of up to 84% for the Worst-Fit heuristic, changing for losses around 16% in the final allocation, after modification of the model, maintaining almost the same power consumption.
6

Alocação dinâmica de tarefas periódicas em NoCs malha com redução do consumo de energia / Energy-aware dynamic allocation of periodic tasks on mesh NoCs

Wronski, Fabio January 2007 (has links)
O objetivo deste trabalho é propor técnicas de alocação dinâmica de tarefas periódicas em MPSoCs homogêneos, com processadores interligados por uma rede emchip do tipo malha, visando redução do consumo de energia do sistema. O foco principal é a definição de uma heurística de alocação, não se considerando protocolos de escalonamento distribuído, uma vez que este ainda é um primeiro estudo para o desenvolvimento de um alocador dinâmico. Na arquitetura alvo utilizada, cada nodo do sistema é dado como autônomo, possuindo seu próprio escalonador EDF. Além disso, são aplicadas técnicas de voltage scaling e power managmenent para redução do consumo de energia durante o escalonamento. Durante a pesquisa do estado da arte, não foram encontradas técnicas de alocação dinâmica em NoCs com restrições temporais e minimização do consumo de energia. Por isso, esse trabalho se concentra em avaliar técnicas de alocação convencionais, como bin-packing e técnicas baseadas em teoria de grafos, no contexto de sistemas embarcados. Dessa forma, o modelo de estimativas do consumo de energia de alocações é baseado no escalonamento de grafos de tarefas, e foi utilizado para implementar a ferramenta Serpens com este propósito. Os grafos de tarefas utilizados nos experimentos são tirados do benchmark E3S – Embedded System Synthesis Benchmark Suite, composto por um conjunto de grafos de tarefas gerados aleatoriamente com a ferramenta TGFF – Task Graph for Free, a partir de dados de aplicações comuns em sistemas embarcados obtidos no EEMBC – Embedded Microprocessor Benchmark Consortium. Entre as heurísticas de bin-packing, Best-Fit, First-Fit e Next-Fit geram alocações com concentração de carga, enquanto a heurística Worst-Fit faz balanceamento de carga. O balanceamento de carga favorece a aplicação de voltage scaling enquanto a concentração favorece o power management. Como o bin-packing não contempla comunicação e dependência entre tarefas em seu modelo, o mesmo foi reformulado para atender esta necessidade. Nos experimentos, a alocação inicial com bin-packing original apresentou perdas de deadlines de até 84 % para a heurística Worst-Fit, passando para perdas em torno de 16% na alocação final, praticamente com o mesmo consumo de energia, após a reformulação do modelo. / The goal of this work is to offer dynamic allocation techniques of periodic tasks in mesh networks-on-chip, aiming to reduce the system power consumption. The main focus is the definition of an allocation heuristic, which does not consider distributed scheduling protocols, since this is the beginning of a study for the development of a dynamic partitioning tool. In the target architecture, each system node is self-contained, that is, the nodes contain their own EDF scheduler. Besides, voltage-scaling and power management techniques are applied for reducing power consumption during the scheduling. To the best of our knowledge, this is the first research effort considering both temporal constraints and power consumption minimization on the dynamic allocation of tasks in a mesh NoC. This way, our concentrates in the evaluation of dynamic allocation techniques, which are generally used in distributed systems, in the embedded systems context, as bin-packing and graph theory based techniques. Therefore, the estimation model for power consumption is based on task graph scheduling, and it was used for implementing the Serpens tool with this purpose. The task graphs used in the experiments were obtained from the E3S benchmark (Embedded System Synthesis Benchmark Suite), which is composed by a set of task graphs randomly generated with the TGFF tool (Task Graph for Free), from common application data obtained from the EEMBC (Embedded Microprocessor Benchmark Consortium). Among the bin-packing heuristics, Best-Fit, First-Fit, and Next-Fit generate allocations with load concentration, while the Worst-Fit heuristics works with load balancing. Load balancing favors the application of voltage scaling, while load concentration favors the utilization of power management. Since the bin-packing model does not consider inter-task communication and dependency, it has been modified to fulfill this need. In the experiments, the initial allocation using the original bin-packing model presented deadline losses of up to 84% for the Worst-Fit heuristic, changing for losses around 16% in the final allocation, after modification of the model, maintaining almost the same power consumption.
7

Caracterização energética da codificação de vídeo de alta eficiência (HEVC) em processador de propósito geral / Energy characterization of high efficiency video coding (HEVC) in general purpose processor

Monteiro, Eduarda Rodrigues January 2017 (has links)
A popularização das aplicações que manipulam vídeos digitais de altas resoluções incorpora diversos desafios no desenvolvimento de novas e eficientes técnicas para manter a eficiência na compressão de vídeo. Para lidar com esta demanda, o padrão HEVC foi proposto com o objetivo de duplicar as taxas de compressão quando comparado com padrões predecessores. No entanto, para atingir esta meta, o HEVC impõe um elevado custo computacional e, consequentemente, o aumento no consumo de energia. Este cenário torna-se ainda mais preocupante quando considerados dispositivos móveis alimentados por bateria os quais apresentam restrições computacionais no processamento de aplicações multimídia. A maioria dos trabalhos relacionados com este desafio, tipicamente, concentram suas contribuições no redução e controle do esforço computacional refletido no processo de codificação. Entretanto, a literatura indica uma carência de informações com relação ao consumo de energia despendido pelo processamento da codificação de vídeo e, principalmente, o impacto energético da hierarquia de memória cache neste contexto. Esta tese apresenta uma metodologia para caracterização energética da codificação de vídeo HEVC em processador de propósito geral. O principal objetivo da metodologia proposta nesta tese é fornecer dados quantitativos referentes ao consumo de energia do HEVC. Esta metodologia é composta por dois módulos, um deles voltado para o processamento da codificação HEVC e, o outro, direcionado ao comportamento do padrão HEVC no que diz respeito à memória cache. Uma das principais vantagens deste segundo módulo é manter-se independente de aplicação ou de arquitetura de processador. Neste trabalho, diversas análises foram realizadas visando a caracterização do consumo de energia do codificador HEVC em processador de propósito geral, considerando diferentes sequências de vídeo, resoluções e parâmetros do codificador. Além disso, uma análise extensa e detalhada de diferentes configurações possíveis de memória cache foi realizada com o propósito de avaliar o impacto energético destas configurações na codificação. Os resultados obtidos com a caracterização proposta demonstram que o gerenciamento dos parâmetros da codificação de vídeo, de maneira conjunta com as especificações da memória cache, tem um alto potencial para redução do consumo energético de codificação de vídeo, mantendo bons resultados de qualidade visual das sequências codificadas. / The popularization of high-resolution digital video applications brings several challenges on developing new and efficient techniques to maintain the video compression efficiency. To respond to this demand, the HEVC standard was proposed aiming to duplicate the compression rate when compared to its predecessors. However, to achieve such goal, HEVC imposes a high computational cost and, consequently, energy consumption increase. This scenario becomes even more concerned under battery-powered mobile devices which present computational constraints to process multimedia applications. Most of the related works about encoder realization, typically concentrate their contributions on computational effort reduction and management. Therefore, there is a lack of information regarding energy consumption on video encoders, specially about the energy impact of the cache hierarchy in this context. This thesis presents a methodology for energy characterization of the HEVC video encoder in general purpose processors. The main goal of this methodology is to provide quantitative data regarding the HEVC energy consumption. This methodology is composed of two modules, one focuses on the HEVC processing and the other focuses on the HEVC behavior regarding cache memory-related consumption. One of the main advantages of this second module is to remain independent of application or processor architecture. Several analyzes are performed aiming at the energetic characterization of HEVC coding considering different video sequences, resolutions, and parameters. In addition, an extensive and detailed analysis of different cache configurations is performed in order to evaluate the energy impact of such configurations during the video coding execution. The results obtained with the proposed characterization demonstrate that the management of the video coding parameters in conjunction with the cache specifications has a high potential for reducing the energy consumption of video coding whereas maintaining good coding efficiency results.
8

Caracterização energética da codificação de vídeo de alta eficiência (HEVC) em processador de propósito geral / Energy characterization of high efficiency video coding (HEVC) in general purpose processor

Monteiro, Eduarda Rodrigues January 2017 (has links)
A popularização das aplicações que manipulam vídeos digitais de altas resoluções incorpora diversos desafios no desenvolvimento de novas e eficientes técnicas para manter a eficiência na compressão de vídeo. Para lidar com esta demanda, o padrão HEVC foi proposto com o objetivo de duplicar as taxas de compressão quando comparado com padrões predecessores. No entanto, para atingir esta meta, o HEVC impõe um elevado custo computacional e, consequentemente, o aumento no consumo de energia. Este cenário torna-se ainda mais preocupante quando considerados dispositivos móveis alimentados por bateria os quais apresentam restrições computacionais no processamento de aplicações multimídia. A maioria dos trabalhos relacionados com este desafio, tipicamente, concentram suas contribuições no redução e controle do esforço computacional refletido no processo de codificação. Entretanto, a literatura indica uma carência de informações com relação ao consumo de energia despendido pelo processamento da codificação de vídeo e, principalmente, o impacto energético da hierarquia de memória cache neste contexto. Esta tese apresenta uma metodologia para caracterização energética da codificação de vídeo HEVC em processador de propósito geral. O principal objetivo da metodologia proposta nesta tese é fornecer dados quantitativos referentes ao consumo de energia do HEVC. Esta metodologia é composta por dois módulos, um deles voltado para o processamento da codificação HEVC e, o outro, direcionado ao comportamento do padrão HEVC no que diz respeito à memória cache. Uma das principais vantagens deste segundo módulo é manter-se independente de aplicação ou de arquitetura de processador. Neste trabalho, diversas análises foram realizadas visando a caracterização do consumo de energia do codificador HEVC em processador de propósito geral, considerando diferentes sequências de vídeo, resoluções e parâmetros do codificador. Além disso, uma análise extensa e detalhada de diferentes configurações possíveis de memória cache foi realizada com o propósito de avaliar o impacto energético destas configurações na codificação. Os resultados obtidos com a caracterização proposta demonstram que o gerenciamento dos parâmetros da codificação de vídeo, de maneira conjunta com as especificações da memória cache, tem um alto potencial para redução do consumo energético de codificação de vídeo, mantendo bons resultados de qualidade visual das sequências codificadas. / The popularization of high-resolution digital video applications brings several challenges on developing new and efficient techniques to maintain the video compression efficiency. To respond to this demand, the HEVC standard was proposed aiming to duplicate the compression rate when compared to its predecessors. However, to achieve such goal, HEVC imposes a high computational cost and, consequently, energy consumption increase. This scenario becomes even more concerned under battery-powered mobile devices which present computational constraints to process multimedia applications. Most of the related works about encoder realization, typically concentrate their contributions on computational effort reduction and management. Therefore, there is a lack of information regarding energy consumption on video encoders, specially about the energy impact of the cache hierarchy in this context. This thesis presents a methodology for energy characterization of the HEVC video encoder in general purpose processors. The main goal of this methodology is to provide quantitative data regarding the HEVC energy consumption. This methodology is composed of two modules, one focuses on the HEVC processing and the other focuses on the HEVC behavior regarding cache memory-related consumption. One of the main advantages of this second module is to remain independent of application or processor architecture. Several analyzes are performed aiming at the energetic characterization of HEVC coding considering different video sequences, resolutions, and parameters. In addition, an extensive and detailed analysis of different cache configurations is performed in order to evaluate the energy impact of such configurations during the video coding execution. The results obtained with the proposed characterization demonstrate that the management of the video coding parameters in conjunction with the cache specifications has a high potential for reducing the energy consumption of video coding whereas maintaining good coding efficiency results.
9

Caracterização energética da codificação de vídeo de alta eficiência (HEVC) em processador de propósito geral / Energy characterization of high efficiency video coding (HEVC) in general purpose processor

Monteiro, Eduarda Rodrigues January 2017 (has links)
A popularização das aplicações que manipulam vídeos digitais de altas resoluções incorpora diversos desafios no desenvolvimento de novas e eficientes técnicas para manter a eficiência na compressão de vídeo. Para lidar com esta demanda, o padrão HEVC foi proposto com o objetivo de duplicar as taxas de compressão quando comparado com padrões predecessores. No entanto, para atingir esta meta, o HEVC impõe um elevado custo computacional e, consequentemente, o aumento no consumo de energia. Este cenário torna-se ainda mais preocupante quando considerados dispositivos móveis alimentados por bateria os quais apresentam restrições computacionais no processamento de aplicações multimídia. A maioria dos trabalhos relacionados com este desafio, tipicamente, concentram suas contribuições no redução e controle do esforço computacional refletido no processo de codificação. Entretanto, a literatura indica uma carência de informações com relação ao consumo de energia despendido pelo processamento da codificação de vídeo e, principalmente, o impacto energético da hierarquia de memória cache neste contexto. Esta tese apresenta uma metodologia para caracterização energética da codificação de vídeo HEVC em processador de propósito geral. O principal objetivo da metodologia proposta nesta tese é fornecer dados quantitativos referentes ao consumo de energia do HEVC. Esta metodologia é composta por dois módulos, um deles voltado para o processamento da codificação HEVC e, o outro, direcionado ao comportamento do padrão HEVC no que diz respeito à memória cache. Uma das principais vantagens deste segundo módulo é manter-se independente de aplicação ou de arquitetura de processador. Neste trabalho, diversas análises foram realizadas visando a caracterização do consumo de energia do codificador HEVC em processador de propósito geral, considerando diferentes sequências de vídeo, resoluções e parâmetros do codificador. Além disso, uma análise extensa e detalhada de diferentes configurações possíveis de memória cache foi realizada com o propósito de avaliar o impacto energético destas configurações na codificação. Os resultados obtidos com a caracterização proposta demonstram que o gerenciamento dos parâmetros da codificação de vídeo, de maneira conjunta com as especificações da memória cache, tem um alto potencial para redução do consumo energético de codificação de vídeo, mantendo bons resultados de qualidade visual das sequências codificadas. / The popularization of high-resolution digital video applications brings several challenges on developing new and efficient techniques to maintain the video compression efficiency. To respond to this demand, the HEVC standard was proposed aiming to duplicate the compression rate when compared to its predecessors. However, to achieve such goal, HEVC imposes a high computational cost and, consequently, energy consumption increase. This scenario becomes even more concerned under battery-powered mobile devices which present computational constraints to process multimedia applications. Most of the related works about encoder realization, typically concentrate their contributions on computational effort reduction and management. Therefore, there is a lack of information regarding energy consumption on video encoders, specially about the energy impact of the cache hierarchy in this context. This thesis presents a methodology for energy characterization of the HEVC video encoder in general purpose processors. The main goal of this methodology is to provide quantitative data regarding the HEVC energy consumption. This methodology is composed of two modules, one focuses on the HEVC processing and the other focuses on the HEVC behavior regarding cache memory-related consumption. One of the main advantages of this second module is to remain independent of application or processor architecture. Several analyzes are performed aiming at the energetic characterization of HEVC coding considering different video sequences, resolutions, and parameters. In addition, an extensive and detailed analysis of different cache configurations is performed in order to evaluate the energy impact of such configurations during the video coding execution. The results obtained with the proposed characterization demonstrate that the management of the video coding parameters in conjunction with the cache specifications has a high potential for reducing the energy consumption of video coding whereas maintaining good coding efficiency results.
10

Análise do custo e consumo em energia elétrica na cadeia produtiva de carne de suínos no Oeste do Paraná / Analysis of cost and consumption in electric energy in the production chain of swine meat in West of Paraná

Silva, Danieli Sanderson 09 March 2018 (has links)
Submitted by Rosangela Silva (rosangela.silva3@unioeste.br) on 2018-06-26T13:27:21Z No. of bitstreams: 2 Danieli_S_Silva.pdf: 2665814 bytes, checksum: d70a8ed25ecd02a31f2c8f987f28169b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-06-26T13:27:21Z (GMT). No. of bitstreams: 2 Danieli_S_Silva.pdf: 2665814 bytes, checksum: d70a8ed25ecd02a31f2c8f987f28169b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-03-09 / Energy is a decisive factor in the economic growth of production systems, being fundamental to operate and keep the entire productive complex in operation. The pork production chain needs electrical energy to power the various motors and electrical devices that make up the lighting, exhaust, heating and cooling systems at each stage of production. In this context, the objective of this work was to evaluate the specific energy consumption in the production, slaughtering and processing of pigs in the West of Paraná, with the objective of evaluating the specific energy cost involved in the pork production chain. In order to carry out the study, pig production properties were visited, where consumption data were collected and the cost of electricity was determined. In addition, data on energy consumption, energy cost and quantity of pigs at slaughter and processing in pig enterprises . From the results found, it was verified that the average specific energy consumption in finishing pig production is 0.0058 kWh / kg, totaling 1% in the process, that the average energy specific consumption at slaughter is 0, 22 kWh / kg, being responsible for 38.22% of the consumption and the consumption in the processing is 0.35 kWh / kg, being responsible for 60.78%, showing to be the stage that consumes the most energy within the meat production chain of pigs. It was also verified that the average specific cost of electric energy in the production of finished pigs is 0.0028 R $ / kg, that the average energy specific cost at slaughter is 0.16 R $ / kg and that the cost in processing is 0.22 R $ / kg. The highest cost is in the processing stage. / A energia é fator decisivo no crescimento econômico dos sistemas de produção, sendo fundamental para operar e manter todo o complexo produtivo em funcionamento. A cadeia produtiva de carne suína necessita de energia elétrica para alimentar os diversos motores e dispositivos elétricos que compõem os sistemas de iluminação, exaustão, aquecimento, refrigeração de cada fase da produção. Nesse contexto, o objetivo deste trabalho foi avaliar o consumo específico de energia na produção, abate e processamento de suínos no Oeste do Paraná, tendo por objetivo ainda, avaliar o custo energético específico envolvido dentro da cadeia de produção de carne suína. Para a realização do estudo foram visitadas propriedades produtoras de suínos, onde foram coletados dados de consumo para determinação do custo de energia elétrica, consumo de energia elétrica, custo da energia e quantidade de suínos no abate e processamento em empresas de suínos. A partir dos resultados encontrados verificou-se que o consumo específico médio de energia na produção de suínos em fase de terminação é de 0,0058 kWh/kg, totalizando 1% no processo, o consumo específico médio energético no abate é de 0,22 kWh/kg, sendo responsável por 38,22% do consumo e o consumo no processamento é de 0,35 kWh/kg, sendo responsável por 60,78%, mostrando ser a etapa que mais consome energia dentro da cadeia produtiva de carne de suínos. Constatou-se ainda, que o resultado de custo específico médio de energia elétrica na produção de suínos em fase de terminação é de 0,0028 R$/kg, o custo específico médio energético no abate é de 0,16 R$/kg e o custo no processamento é de 0,22 R$/kg. Sendo que o maior custo apresenta-se na fase de processamento.

Page generated in 0.0737 seconds