• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 46
  • 15
  • 15
  • 13
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 275
  • 275
  • 116
  • 47
  • 45
  • 43
  • 41
  • 40
  • 37
  • 34
  • 27
  • 26
  • 25
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

COMPUTATIONAL AND EXPERIMENTAL INVESTIGATION ON THE WETTING BEHAVIOR OF DROPLET-FIBER SYSTEMS

Aziz, Hossain 01 January 2019 (has links)
Interaction of a liquid droplet and a fiber or layer of fibers is ubiquitous in nature and in a variety of industrial applications. It plays a crucial role in fog harvesting, coalescence filtration, membrane desalination, self-cleaning and fiber based microfluidics, among many others. This work presents a quantitative investigation on the interactions of a droplet with a fiber or layers of fibers. More precisely, the present work is focused on 1) predicting the effects of fiber’s size and material on its ability to withhold a droplet against external forces and on the liquid residue left on the fiber after the droplet detachment, 2) predicting the outcome of two fibers competing to attract the same droplet, and 3) predicting the wetting stability of a droplet deposited on a layer of electrospun fibers. This work is comprised of series of computational and experimental studies for mutual validation and/or calibration. The simulations were conducted using the Surface Evolver code and the experiments were devised using a ferrofluid and a magnet. We also investigated the drag reduction performance of fibrous coatings because of its close connection with droplet-fiber interaction. We started by studying the drag reduction performance of a superhydrophobic granular coating because of its geometrical simplicity. We modeled the flow of water over the granular coating and studied the effects of hydrostatic pressure and microstructural properties on the drag reduction performance of the coating. We then examined the drag reduction performance of a lubricant infused surface with trapped air made of layers of parallel fibers (FLISTA). A mathematical model was developed to predict the shape of the water-lubricant interface and lubricant-air interface under a given hydrostatic pressure. This information was used to solve the flow field over the coating in a Couette configuration to find the effects of hydrostatic pressure and microstructural properties of the coating on its drag reduction performance.
22

On the Surface of Conducting Polymers : Electrochemical Switching of Color and Wettability in Conjugated Polymer Devices

Isaksson, Joakim January 2005 (has links)
<p>Since the discovery in 1977 that conjugated polymers can be doped to achieve almost metallic electronic conduction, the research field of conducting polymers has escalated, with applications such as light emitting diodes, solar cells, thin film transistors, electrochemical transistors, logic circuits and sensors. The materials can be chemically modified during their synthesis in order to tailor the desired mechanical, electronic and optical properties of the final product. Polymers are also generally possible to process from solution, and regular roll-to-roll printing techniques can therefore be used for manufacturing of electronic components on flexible substrates like plastic or paper. On top of that, the nature of conjugated polymers enables the creation of devices with novel properties, which are not possible to achieve by using inorganic materials such as silicon.</p><p>The work presented in this thesis mainly focuses on devices that utilize two rather unique properties of conducting polymers. Conducting polymers are generally electrochromic, i.e. they change color upon electrochemical oxidation or reduction, and can therefore be used as both conductor and pixel element in simple organic displays. As a result of the electrochemical reaction, some polymers also alter their surface properties and have proven to be suitable materials for organic electronic wettability switches. Control of surface wettability has applications in such diverse areas as printing techniques, micro-fluidics and biomaterials.</p><p>The aim of the thesis is to briefly describe the physical and chemical background of the materials used in organic electronic devices. Topics include molecular properties and doping of conjugated polymers, electrochromism, surface tension etc. This slightly theoretical part is followed by a more detailed explanation of device design, functionality and characterization. Finally, a glance into future projects will also be presented.</p> / ISRN/Report code: LiU-TEK-LIC-2005:50
23

Floating Bodies in the Absence of Gravity

Kemp, Todd Murray January 2011 (has links)
The study of infinitely long cylinders of constant cross-section floating in an infinite fluid bath in zero-gravity environments has primarily been focused on bodies whose cross-sections are strictly convex and sufficiently smooth. In this thesis, our efforts are concentrated on the consideration of bodies that are only convex and piecewise smooth. These types of bodies are seldom considered in current literature. We have worked with a series expansion of the energy function in order to determine when configurations of a given body will be in equilibrium, stable or otherwise. We have proven that any convex body with a straight side cannot float in a stable equilibrium with the fluid interface intersecting the interior of the straight side in a single point. This fact is then used to prove necessary and sufficient conditions for stable equilibrium of polygons, bodies whose cross-sections are comprised of only straight sides. We illustrate these conditions with several examples. In the latter portion of the thesis, we turn our attention to bodies in three dimensions. While past research has again been focused on strictly convex bodies, we began to consider bodies that do not meet these requirements by examining bodies of revolution. A condition for stability with respect to vertical variations of bodies of revolution is derived. We conclude with several examples of bodies of revolution, some of which interestingly relate back to an analogous two-dimensional shape.
24

Fabrication of Spacers for Ferroelectric Liquid Crystal Display Using Photolithographic Technique and A Study of Their Characteristics

Wang, Chun-chi 15 July 2008 (has links)
Surface stabilized ferroelectric liquid crystal device (SSFLCD) has fast response time and exhibits excellent bistability. The SSFLCD has wide view angle because it operates in the in plane switching (IPS) mode. However, SSFLCD is a thin device, the uniform of its cell gap is difficult to control. When surface stabilized ferroelectric liquid crystal align, it is easy to bring in zigzag defect. In this study, the use of SU-8 photoresist to make photospacer by using photolithographic technique is studied. We control the thickness of photospacer at 1.08£gm. By using photospacer, we can get the cell with uniform cell gap. The influence of the property of the alignment layer and photospacer on surface stabilized ferroelectric liquid crystal alignment are discussed. We find that when the liquid crystal is injected anti-parallel to the rubbing direction, the alignment of Surface stabilized ferroelectric liquid crystal is easily influenced by photospacers. Wetting characteristics of the substrates is found to strongly affect the alignment of the ferroelectric liquid crystal.
25

A method for the measurement of the angle of contact formed between a liquid surface and a fiber, and the application of this and swelling data to pore diameter measurements

Foote, James Edward, January 1936 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1936. / Includes bibliographical references (leaf 127).
26

Static and Dynamic Components of Droplet Friction

Griffiths, Peter Robert 01 January 2013 (has links)
As digital microfluidics has continued to mature since its advent in the early 1980's, an increase in new and novel applications of this technology have been developed. However, even as this technology has become more common place, a consensus on the physics and force models of the motion of the contact line between the fluid, substrate, and ambient has not been reached. This uncertainty along with the dependence of the droplet geometry on the force to cause its motion has directed much of the research at specific geometries and droplet actuation methods. The goal of this thesis is to help characterize the components of the friction force which opposes droplet motion as a one dimensional system model based upon simple system parameters independent from the actuation method. To this end, the force opposing the motion of a droplet under a thin rectangular glass cover slip was measured for varying cover slip dimensions (widths, length), gap height between the cover slip and substrate, and bulk droplet velocity. The stiffness of the droplet before droplet motion began, the force at which the motion initiated, and the steady-state force opposing the droplet motion were measured. The data was then correlated to hypothesized equations and compared to simple models accounting for the forces due to the contact angle hysteresis, contact line friction, and viscous losses. It was found that the stiffness, breakaway force, and steady-state force of the droplet could be correlated to with an error standard deviation of 8 %, 14%, and 10 % respectively. Much of the error was due to an unexpected height dependence for the breakaway and steady-state forces and testing error associated with the velocity. The models for the stiffness and breakaway force over predicted the results by 36% and 16% respectively. During testing, viii stability issues with the cover slip were observed and simple dye testing was conducted to visualize the droplet flow field.
27

Characterization of electrowetting systems for microfluidic applications

Mishra, Pradeep K 01 June 2009 (has links)
Electrowetting is the change in apparent surface energy in the presence of an electric field. Recently, this phenomenon has been used to control the shape and location of individual droplets on a surface. However, many microfluidics researchers have acknowledged unexplained behaviors and performance degradation. In this work, electrowetting systems are characterized with different methods. The electrowetting response is measured by measuring contact angle for different applied voltages. A novel technique for direct measurement of Electrowetting Force (EWF) using nano indenter is proposed in this work. The EWF measurements show that, for aqueous solution the EWF is more as compared to DI water. Additionally, the electrowetting system is found to be more susceptible for degradation when aqueous solution is used. The performance degradation due to defective dielectric layer is also investigated by measuring the electrowetting force. Degradation of EWOD systems with environmental exposure over time is further studied experimentally by contact angle and electrochemical impedance spectroscopy (EIS) measurements. The time constant of 'contact angle decay' with environmental exposure is found to be similar to the time constant of electrolyte diffusion in dielectric layer.
28

Floating Bodies in the Absence of Gravity

Kemp, Todd Murray January 2011 (has links)
The study of infinitely long cylinders of constant cross-section floating in an infinite fluid bath in zero-gravity environments has primarily been focused on bodies whose cross-sections are strictly convex and sufficiently smooth. In this thesis, our efforts are concentrated on the consideration of bodies that are only convex and piecewise smooth. These types of bodies are seldom considered in current literature. We have worked with a series expansion of the energy function in order to determine when configurations of a given body will be in equilibrium, stable or otherwise. We have proven that any convex body with a straight side cannot float in a stable equilibrium with the fluid interface intersecting the interior of the straight side in a single point. This fact is then used to prove necessary and sufficient conditions for stable equilibrium of polygons, bodies whose cross-sections are comprised of only straight sides. We illustrate these conditions with several examples. In the latter portion of the thesis, we turn our attention to bodies in three dimensions. While past research has again been focused on strictly convex bodies, we began to consider bodies that do not meet these requirements by examining bodies of revolution. A condition for stability with respect to vertical variations of bodies of revolution is derived. We conclude with several examples of bodies of revolution, some of which interestingly relate back to an analogous two-dimensional shape.
29

Use of contact angle analysis for the measurement of the relative hydrophilicity of food contact surfaces

Kirtley, Sidney A. 26 August 1991 (has links)
Graduation date: 1992
30

Experimental Investigation of Wind-Forced Drop Stability

Schmucker, Jason 2012 August 1900 (has links)
The stability of drops forced by both wind and gravity is a fluid mechanics problem relevant to heat exchangers, fuel cells, and aircraft icing. To investigate this phenomenon, drops from 15 micro-liters to 400 micro-liters were placed on the rough aluminum (RA = 3.26 micrometers) floor of a tiltable wind tunnel and brought to critical conditions, when the drop begins to run downstream. Various combinations of drop size, inclination angle, and flow speed were employed. A measurement technique capable of measuring full 3D drop profiles was implemented to investigate the drops' evolution toward runback. The measurement requires the comparison of the speckle pattern captured by an overhead drop image with a corresponding image of the dry surface. Stability limits for 235 drops are measured as functions of drop volume and surface inclination. Drops experiencing airflow alone are found to shed at a Weber number of 8.0 +/- 0.5. From measurement sequences of reconstructed drop profiles, the evolution of contact lines, drop profiles, and contact angle distributions are detailed. Contact line integral adhesion forces are calculated from contact angle distributions and related to the forcing air velocity. Drops whose stability limits are dominated by gravity are found to exhibit significantly different evolution toward runback than those dominated by airflow.

Page generated in 0.0381 seconds