Spelling suggestions: "subject:"contact model"" "subject:"acontact model""
1 |
Discrete element modelling of iron ore pellets to include the effects of moisture and finesMorrissey, John Paul January 2013 (has links)
Across industry the majority of raw materials handled are particulate in nature, ranging in size and properties from aggregates to powders. The stress regimes experienced by the granular solids vary and the exhibited bulk behaviours can be complex and unexpected. The prevalence of granular solids makes them an area of interest for industry and researchers alike as many challenges still remain, such as dealing with complex cohesive behaviour in materials, which often gives rise to handling difficulties. Storage and transportation are an important part of the process chain for industries where particulate solids are commonplace. Failure to properly account for the cohesive nature of a particulate solid can be costly as it can easily lead to blockages in a silo such as ratholing or arching near the outlet during discharge. The cohesive strength of a bulk material depends on the consolidation stress it has experienced. As a result, the stress history in the material leading up to a handling scenario needs to be considered when evaluating its handling behaviour. The Discrete Element Method (DEM) has been extensively used to simulate the behaviour of granular materials, however the majority of the focus has been on noncohesive systems. For cohesive solids, it is crucial that the stress history dependent behaviour is adequately captured. Many of the contact models commonly used in DEM simulations to simulate cohesive granular materials such as the JKR model or liquid bridge models are elastic in nature and may not capture the stress history dependent behaviour observed in cohesive particulate solids. A comprehensive study on the effect of cohesion arising from the addition of moisture on the behaviour of two types of LKAB iron ore fines (KPBO and KPRS) has been carried out. The addition of moisture to the sample has been found to have a significant effect on both kinds of fines. KPRS fines were found to have a much higher unconfined strength and flow function at higher moisture contents, and also show a greater increase in cohesion with the addition of moisture, while at moisture contents of less than 2% the KPBO fines demonstrate higher unconfined yield strength. The KPBO fines were also found to achieve a significantly looser initial packing at much lower moisture content when compared to the KPRS fines. The lateral pressure ratio has also been evaluated. In this study a mesoscopic adhesive contact model that accounts for contact plasticity and stress history dependency in the bulk solid, the Edinburgh Elasto-Plastic Adhesion (EEPA) mode, has been presented and mathematically verified. A parametric study of the DEM contact model parameters was conducted to gain a deeper understating of the effect of input parameters on the simulated cohesive bulk behaviour. The EEPA contact model has been used to predict an experimental flow function of KPRS iron ore fines. The contact model has demonstrated the ability to capture the stress history dependent behaviour that exists in cohesive granular solids. The DEM simulations provide a very close match to the experimental flow functions, with the predicted unconfined strengths found to be within the standard deviations of the experimental results. Investigations into the failure mode predicted by the DEM simulations show that the samples are failing from the development of shear planes similar to those observed experimentally. The effect of increasing levels of adhesion has been explored for a flat bottomed silo where the level of adhesion has been varied. The DEM simulations were found to capture the major phenomena occurring in silo discharge including the various flow zones associated with a flat bottomed silo. Funnel flow, the effective transition and mass flow which are associated with a mixed flow pattern were observed in the model silo. The location of the effective transition height was identified: above this was mass flow. The velocity determined from the discharge rate was found to be in excellent agreement with the velocity profiles found in the zones of mass flow. A high velocity core flow zone was observed above the outlet where velocities were greater than 1.25 times the mass flow velocity, VMF. The level of adhesion in the silo was found to affect the discharge rate - a reduced flow rate was found until the eventual blockage of the silo at a high level of adhesion was found. As the level of adhesion increased the probability of arching also increased, and the formation of intermittent arching behaviour was noted in the cases with higher levels of adhesion in the system. The development of both temporary and permanent cohesive arches over the silo outlet were also observed with stopped flow from the silo.
|
2 |
Binder Film Thickness Effect on Aggregate Contact BehaviorWang, Dong 22 August 2007 (has links)
This study presents a study on the binder film thickness effect on aggregate contact behavior. As a three-phase material composed of aggregates, asphalt binder and air voids, asphalt mixture could be considered as a visco-elastic material in the low stress level. Since the behavior of the mixture depends largely on the relationship of different components, a well developed contact model for micro-structural modeling is very important for understanding the deformation mechanism of the mixture. In this study, the contact modeling of asphalt mixture was reviewed and the numerical tools used to investigate the micromechanical behavior of asphalt mixture will also be introduced. By using the cabinet x-ray tomography system, the displacement and resistant force of a system of particles bonded by a thin layer binder are measured and recorded. Then, the results are compared with the theoretical solutions of a normal compliance model for a system comprised of two elastic particles bonded by a thin layer of visco-elastic binder. A closed-form time-dependent relationship between the contact forces and the relative particle/binder movements was developed. A reasonable agreement between experiments results and model predicted results is obtained combined with parametric analysis. / Master of Science
|
3 |
Impact des défauts géométriques sur l'amortissement dans les assemblages / Impact of geometrical defects on damping in assembliesBouchaala, Noussa 17 January 2014 (has links)
Cette thèse porte sur la quantification de l’énergie dissipée ainsi que l’amortissement induit par les micro-glissements dans les interfaces constituant les assemblages mécaniques en présence du défaut géométrique. Le mémoire est composé de quatre chapitres traitant la problématique tant du point de vue analytique qu’expérimental. Un modèle rhéologique de contact basé sur les hypothèses de Greenwood et Williamson est développé afin de prendre en compte les défauts géométriques à l’interface du contact. L’énergie dissipée ainsi que l’amortissement induit par les micro-glissements entre deux surfaces rugueuses soumises à un effort normal constant et un déplacement tangentiel allant du glissement partiel jusqu’au glissement total sont déterminés. Afin de valider et discuter le modèle développé on a considéré un montage expérimental composé d’un tribomètre installé sur la machine MTS 830. Afin de révéler le phénomène de dissipation d’énergie entre deux surfaces nominalement planes soumises à un effort normal statique et une rotation alternée, un second banc d’essai est dimensionné et réalisé. Le montage est constitué de deux poutres assemblées par un boulon et excitées par un pot vibrant. Le modèle rhéologique de contact développé dans le premier partie est étudiée dans le cas où les deux surfaces en contact soumises à une charge normal statique et une rotation alternée dynamique. / This thesis focuses on the quantification of energy dissipation and damping induced by microslipping in interfaces constituent assemblies in the presence of geometric defect. The thesis contains four chapters examining this problem from both analytical and experimental viewpoints. A rheological contact model based on the assumptions of Greenwood and Williamson is developed to take into account the geometrical defects at the interface of contact. The energy dissipated and damping induced by micro-slipping between two rough surfaces subjected to a constant normal force and tangential displacement ranging from partial slip to total slip are determined. To validate and discussed the developed model we considered an experimental setup consisting of a tribometer installed on the MTS 830 machine. To reveal the phenomenon of energy dissipation between two nominally flat surfaces subjected to a static axial force and an alternating rotation, a second test bench is designed andrealized. The experimental setup consists of two beams assembled by bolt and excited by a shaker. The rheological contact model developed in the first part is studied in the case where the two contact surfaces subjected to a normal static and dynamic load alternating rotation.
|
4 |
On Comparison of Indentation ModelsDaly, John Louis, Jr. 05 April 2007 (has links)
Thin films that are functionally gradient improve the mechanical properties
of film-substrate layered materials. Mechanical properties of such materials are
found by using indentation tests. In this study, finite element models are
developed to simulate the indentation test. The models are based on an
axisymmetric half space of a specimen subjected to spherical indentation. The
film layer through the thickness is modeled to have either homogeneous material
properties or nonhomogeneous material properties that vary linearly.
Maximum indenter displacement, and maximum normal and shear
stresses at the interface are compared between the homogeneous model and
the nonhomogeneous model for pragmatic contact length to film thickness ratios
of 0.2 to 0.4, and film to substrate moduli ratios of 1 to 200 to 1.
Additionally, a coefficient is derived from regression of the stress data
produced by these models and compared to that used to define the pressure field
in the axisymmetric Hertzian contact model. The results of this study suggest
that a displacement boundary condition to an indenter produces the same results
as a pressure distribution boundary condition.
The critical normal stresses that occur between modeling a film as a
nonhomogeneous and as a homogeneous material vary from 19% for a modulus
ratio of 2.5:1 to as high as 66% for a modulus ratio of 200:1 indicating that the
modeling techniques produced very different maximum normal stresses. The
difference in the maximum shear stress between the nonhomogeneous and the
homogeneous models varied from 19% for a 2.5:1 modulus ratio to 57% for the
200:1 modulus ratio but reached values as low as 6% for the 50:1 modulus ratio.
The maximum contact depth between the nonhomogeneous and the
homogeneous models varied from 14% for the 2.5:1 case to as much as 75% in
the 200:1 case.
The results from the reapplication of the pressure field derived from the
regression coefficients and the
R2 values from these regression models indicate
the correctness of the regression model used as well as its ability to replicate the
normal stresses in the contact area and maximum indenter displacements in a
FEA model for both the homogeneous and the nonhomogeneous models for
modulus ratios ranging from 2.5:1 to 200:1.
The agreement between the regression based coefficients and the force
based coefficients suggests the validity for the use of the theoretical
axisymmetric Hertzian contact model for defining the pressure field in the contact
area and displacements for both the homogeneous case and the
nonhomogeneous case for the considered film to substrate moduli ratios and
contact length to film thickness ratios.
|
5 |
DISCRETE COMPLIANT MOTION PLANNING SYSTEM FOR ROBOTIC ASSEMBLYYang, Fan January 2009 (has links)
This dissertation focuses on compliant motion planning designed for robotic assembly. A Discrete Complaint Motion Planner (DCMP) reacts to detected discrete contact state transitions and issues compliant motion command to the underlying continuous robot system. It consists of a Qualitative Contact Model, a Compliant Motion Strategy Planner (CMSP) and a Compliant Motion Command Planner (CMCP).How to model and characterize a contact state is a major issue. In this dissertation, contact states are described using the qualitative configuration representation called Feature Interaction Matrix (FIM). A FIM encodes not only the contact information but also the relative configuration between two polyhedral parts. This FIM-based qualitative contact state model has several contributions: 1) an optimization-based approach is developed to verify the hypothetical states in FIM; 2) penetration check for hypothetical contact states through constraint satisfaction is simple and fast; 3) spatial adjacency can be easily determined using convex cone techniques; 4) a generate-and-test method is proposed to expand qualitative states in FIM; 5) compliant motion parameters are derived by an optimization method.The qualitative contact states and how they are connected is modeled with an adjacency graph/sub-graph, where nodes represent qualitative contact states and spatially adjacent contact states are connected by arcs. Each arc represents a desired contact state transition. The CMSP receives contact state transition event from an on-line estimator, then computes/checks the assembly strategy and issues the next desired contact state transition to the CMCP. The compliant motion strategy is computed using graph-search techniques with the automatic construction of the adjacency graph/sub-graph. The CMSP integrate hypotheses generation, hypotheses verification, spatial adjacency and graph search algorithms.When the next desired contact state transition is received, the CMCP computes the compliant motion parameters that are issued to the underlying continues robot system to achieve the desired contact state transition. The generation of motion parameters is defined as an optimization problem and an algorithm is developed to solve it.The DCMP in this dissertation considers both 3D translational and 3D rotational motions. Experiments are carried out to demonstrate the feasibility of the approach for the automatic assembly of polyhedral parts.
|
6 |
Analysis of shear strength of rock joints with PFC2DLazzari, Elisa January 2013 (has links)
Joints are the main features encountered in rock and sliding of rock blocks on joints is classified as the principal source of instability in underground excavations. In this regard, joints’ peak shear strength is the controlling parameter. However, given the difficulty in estimating it, shear tests are often performed. These are often quite expensive and also time consuming and, therefore, it would be valuable if shear tests could be artificially performed using numerical models. The objective of this study is to prove the possibility to perform virtual numerical shear tests in a PCF2D environment that resemble the laboratory ones. A numerical model of a granite rock joint has been created by means of a calibration process. Both the intact rock microparameters and the smooth joint scale have been calibrated against macroparameters derived from shear tests performed in laboratory. A new parameter, the length ratio, is introduced which takes into account the effective length of the smooth joint compared to the theoretical one. The normal and shear stiffnesses, the cohesion and the tensile force ought to be scaled against the length ratio. Four simple regular joint profiles have been tested in the PFC2D environment. The analysis shows good results both from a qualitative and from a quantitative point of view. The difference in peak shear strength with respect to the one computed with Patton´s formula is in the order of 1% which indicates a good accuracy of the model. In addition, four profiles of one real rough mated joint have been tested. From the scanned surface data, a two-dimensional profile has been extracted with four different resolutions. In this case, however, interlocking of particles along the smooth joint occurs, giving rise to an unrealistic distribution of normal and shear forces. A possible explanation to the problem is discussed based on recent developments in the study of numerical shear tests with PFC2D.
|
7 |
[en] 3D GEOLOGICAL AND STRUCTURAL GEOLOGY MODELING AND 2D OPEN PIT MINE SLOPE STABILITY ANALYSIS BY THE SYNTHETIC ROCK MASS (SRM) METHOD / [pt] MODELAGEM GEOLÓGICA E ESTRUTURAL 3D E ANÁLISE DE ESTABILIDADE DE TALUDES 2D EM MINA A CÉU ABERTO PELO MÉTODO SRM (SYNTHETIC ROCK MASS)CARLOS ENRIQUE PAREDES OTOYA 04 November 2021 (has links)
[pt] Em uma mina a céu aberto, a estabilidade dos taludes rochosos é um dos maiores desafios na engenharia das rochas devido aos processos geodinâmicos que formaram o depósito de minério, fazendo de cada depósito complexo e único. Algumas das complexidades encontradas comumente são: a geologia nos arredores do depósito, a alta variabilidade das propriedades, os complexos defeitos estruturais, o grau de alteração das rochas, a informação geomecânica limitada, etc. Antes de avaliar a estabilidade de taludes devemos caracterizar o maciço rochoso. Para caracterizá-lo se têm construído os modelos geológico, estrutural e do maciço rochoso para formar o modelo geotécnico como recomenda o projeto Large Open Pit (LOP), um projeto de pesquisa internacional relacionado à estabilidade de taludes de rocha nas minas a céu aberto. Uma vez construídos os domínios geotécnicos, a estabilidade de taludes rochosos pode ser avaliada para cada domínio pelos métodos de equilíbrio limite ou numéricos como o método dos elementos finitos ou o método dos elementos discretos. O uso do método depende de diversos fatores, como a influência dos elementos estruturais, a importância da análise, a informação disponível, etc. Os métodos de equilíbrio limite como os tradicionais de Bishop e Janbu podem ser usados na avaliação de estabilidade de grandes taludes de rocha que são susceptíveis a falhas rotacionais do maciço rochoso. Já o método de elementos finitos se tem desenvolvido rapidamente e tem ganhado popularidade para a análise de estabilidade de taludes no caso em que o mecanismo de falha não esteja controlado por estruturas discretas geológicas. Os métodos de elementos finitos estão baseados em modelos constitutivos de tensão – deformação para rochas intactas e têm dificuldades em simular famílias com um número grande de descontinuidades dentro do maciço rochoso. O método dos elementos discretos permite simular um número grande de descontinuidades assim como também permite a simulação de grandes deformações. A presente dissertação usa o modelo SRM (Synthetic Rock Mass) para avaliar a estabilidade de taludes de uma mina a céu aberto no Peru. O SRM é uma nova técnica para simular o comportamento mecânico de maciços rochosos fraturados e permite simular a propagação de fraturas e os efeitos da anisotropia. Está técnica usa o modelo BPM (Bonded Particle Model) para representar a rocha intacta e o SJM (Smooth - Joint Contact Model) para representar as estruturas do maciço rochoso dentro do programa PFC. Para a modelagem estrutural se utilizou o método DFN (Discrete Fracture Network). Para a determinação dos modelos geológicos e estrutural se utilizou o programa Petrel e para a análise de estabilidade de taludes usando o modelo SRM se utilizou o programa PFC 4.0 na versão 2D. / [en] In an open pit mine, stability of rock slope is one of the most challenges in rock mechanics due to geodynamic processes that formed the ore deposit, making each deposit complex and unique. Some of the complexities commonly encountered are: the geology in the vicinity of the deposit, the high variability of properties, the complex structural defects, the rock alteration degree, limited geomechanical data, etc. Before evaluating the slope stability we should characterize the rock mass. To characterize it we have built the geological model, structural model and rock mass model to form the geotechnical model as it recommends the Large Open Pit project (LOP), an international research project related to stability of rock slope in open pit mines. Once constructed geotechnical domains, the stability of rock mass slope can be evaluated for each domain by using some known methods like limit equilibrium, the finite elements and discrete element methods. The use of the method depends of different factors like influence of structural elements (defects), importance of analysis, available information, etc. Limit equilibrium traditional methods like Bishop and Janbu can be used to evaluate the stability of large rock slopes that are susceptible to rotational failure of rock mass. Since the finite element method has developed rapidly and has gained popularity for the slope stability analysis in the case where failure mechanism is not controlled by discrete geological structure. Finite element method is based on constitutive models of stress-strain for intact rocks and has difficulties in simulating sets with a large number of discontinuities within the rock mass. The discrete element method allows to simulate a large number of discontinuities and also allows the simulation of large deformations. This dissertation uses the SRM (Synthetic Rock Mass) model to evaluate the stability of slopes in an open pit mine in Peru. The SRM model is a new technique that allows the simulation of the mechanical behavior of fractured rock mass taking into account propagation of fractures and anisotropic effects. This technique uses two well established techniques like BPM (Bonded Particle Model) for representation of intact rock and the SJM (Smooth-Joint Contact Model) to represent the structural fabric within the PFC program. For structural modeling it was used DFN method (Discrete-Fracture Network). To determine the geological and structural model it was used the Petrel program (Version 2010.1) and for slope stability analysis with the SRM model it was used the version 2D of the PFC 4.0 program.
|
8 |
Bonded Particle Model for Jointed Rock MassMas Ivars, Diego January 2010 (has links)
Jointed rock masses are formed of intact rock and joints. There-fore, proper characterization of rock mass behavior has to consid-er the combined behavior of the intact rock blocks and that of the joints. This thesis presents the theoretical background of the Synthetic Rock Mass (SRM) modeling technique along with example applica-tions. The SRM technique is a new approach for simulating the mechanical behavior of jointed rock masses. The technique uses the Bonded Particle Model (BPM) for rock to represent intact ma-terial and the Smooth-Joint Contact Model (SJM) to represent the in situ joint network. In this manner, the macroscopic behaviour of an SRM sample depends on both the creation of new fractures through intact material, and slip/opening of pre-existing joints. SRM samples containing thousands of non-persistent joints can be submitted to standard laboratory tests (UCS, triaxial loading, and direct tension tests) or tested under a non-trivial stress path repre-sentative of the stresses induced during the engineering activity under study. Output from the SRM methodology includes pre-peak properties (modulus, damage threshold, peak strength) and post-peak proper-ties (brittleness, dilation angle, residual strength, fragmentation). Of particular interest is the ability to obtain predictions of rock mass scale effects, anisotropy and brittleness; properties that can-not be obtained using empirical methods of property estimation. Additionally, the nature of yielding and fracturing can be studied as the rock mass fails. This information can improve our understand-ing of rock mass failure mechanisms. / QC20100720
|
9 |
Development of a Rock Expert System (RES) for Evaluating Rock Property Values and Utilization of Three Dimensional Particle Flow Code (PFC3D) to Investigate Rock BehaviorDing, Xiaobin January 2013 (has links)
This research consists of two main parts: development of a rock expert system (RES) as an easy-to-use and effective tool for evaluating rock properties, and modification and utilization of the three-dimensional Particle Flow Code (PFC3D) to analyze rock behavior. Because of different reasons, it is often difficult to obtain the rock property values directly. As an alternative, typical values and empirical correlations are often used to evaluate the rock property values. However, the typical values and empirical correlations come in various forms and are scattered in different sources. It is often difficult, time-consuming or even impossible for an engineer to find appropriate information to estimate the required rock properties. So in the first part of the research, the RES was developed as an easy-to-use and effective tool for evaluating rock properties by conducting detailed review and evaluation of well determined values and empirical correlations of rock properties in the published literature, and developing a central database and data application tools. The study of RES demonstrates the storage of rock property values and correlations is strongly applicable and the web based data application tool is effective to use and easy expandable. Considering its granular nature, the discrete element method (DEM) has been widely adopted to analyze the mechanical behavior of rock. The Particle Flow Code (PFC) is one of the most popular DEM softwares. The basic idea of PFC is to treat rock as an assembly of bonded particles that follow the law of motion and consider the model behavior dominated by the formation and interaction of micro cracks developed within the particle-particle cement (bond). Unlike the continuum methods, PFC can deal with the natural process from micro cracking to macro failure, without predefining a failure criterion for the rock. However, there are still issues related to the application of PFC to analyze different rock problems. For example, so far, most of the studies use PFC2D although many of the problems are three dimensional and should be better simulated with PFC3D. It is also found that the simulations using the default PFC parallel bond model extremely underestimate the ratio of unconfined compressive strength to tensile strength (UCS/T). So in the second part of the research, the important aspects related to the application of PFC3D, including model scale, particle size distribution and contact model, were studied, a new contact model was developed for addressing the limitation of the default PFC3D on obtaining unrealistically low UCS/T ratios, and finally the new contact model was used to investigate rock fracture initiation and propagation.
|
10 |
Development, Implementation, and Analysis of a Contact Model for an Infectious DiseaseThompson, Brett Morinaga 05 1900 (has links)
With a growing concern of an infectious diseases spreading in a population, epidemiology is becoming more important for the future of public health. In the past epidemiologist used existing data of an outbreak to help them determine how an infectious disease might spread in the future. Now with computational models, they able to analysis data produced by these models to help with prevention and intervention plans. This paper looks at the design, implementation, and analysis of a computational model based on the interactions of the population between individuals. The design of the working contact model looks closely at the SEIR model used as the foundation and the two timelines of a disease. The implementation of the contact model is reviewed while looking closely at data structures. The analysis of the experiments provide evidence this contact model can be used to help epidemiologist study the spread of an infectious disease based on the contact rate of individuals.
|
Page generated in 0.0708 seconds