• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A measurement of ocean-bottom slope

Newman, Howard S. January 1900 (has links)
Originally presented as the author's thesis (master's, University of Rhode Island). / Cover title. "27 April 1967." Includes bibliographical references (leaf 54).
2

Internal-wave mixing along sloping boundaries : a mechanism for generating intermediate nepheloid layers /

McPhee, Erika E. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 172-178).
3

Assessment of some triggering mechanisms associated with submarine slope failures on continental slopes utilizing centrifuge testing /

Parsons, Sterling, January 2005 (has links)
Thesis (M.Eng.)--Memorial University of Newfoundland, 2005. / Restricted until October 2007. Bibliography: leaves 128-137.
4

Late quaternary sedimentology and sediment instability of a small area on the Scotian Slope /

Mosher, David Cole. January 1987 (has links)
Thesis (M.Sc.) -- Memorial University of Newfoundland, 1987. / Typescript. Bibliography: leaves 183-203. Also available online.
5

Plio-Pleistocene evolution of the upper continental slope, Garden Banks and East Breaks areas, northwestern Gulf of Mexico

Fiduk, J. C. (Joseph Carl), 1957- 06 February 2013 (has links)
Over 7000 sq. km of salt and six Plio-Pleistocene biostratigraphic horizons were mapped in the East Breaks and Garden Banks areas using a 12,000 km grid of seismic data and all obtainable well data. Structure mapping of allochthonous Jurassic salt and the six horizons (Globoquadrina altispira, Lenticulina 1, Angulogerina B, Hyalinea B, Trimosina A, and Sangamon Fauna) and isopachs of the intervals between these horizons revealed notable lateral variations in the area underlain by salt, in the degree of salt deformation, and in the size and thickness of associated intraslope basins. East of 94.5° W salt structures occupy 40% of the area and exhibit complex shapes that suggest a high degree of salt deformation. West of 94.5° W salt structures occupy 11% of the area and consist mostly of structurally simple salt stocks. A zone of high-offset north-south trending faults mark the transition between these two areas. Isopach maps of the six Plio-Pleistocene intervals (from 2.9 Ma to the present) reveal major shifts in the rates and locations of sediment accumulation. From 2.9 to 1.0 Ma. sediment-accumulation rates averaged only 0.8-1.3 mm/y with a maximum rate of 2.7 mm/y. From 1.0 to 0.69 Ma. sediment-accumulation rates averaged 5.8 mm/y with a maximum rate of 11.6 mm/y. This interval correlates to sediments deposited between the extinctions of Hyalinea balthica and Trimosina denticulata and recorded a major period of sediment loading/salt withdrawal between 1.0-0.69 Ma. From the end of this time to the present, sediment -accumulation rates averaged 1.7-2.1 mm/y with a maximum rate measured at 6.2 mm/y. Increased sediment influx during 1.0-0.69 Ma coincides with a major third order sea level lowstand and was focused in central Garden Banks. The restriction of such dramatically increased accumulation rates to this area suggests that sediment influx was accompanied by large-scale salt withdrawal. The increase in accommodation space created by salt withdrawal appears to be the most important factor affecting accumulation rates. Salt structural styles found on the upper continental slope are transitional between those found on the lower slope and those on the shelf. The shelf is dominated by isolated, individual salt stocks (km²) surrounded by kilometer thick sedimentary sections. The lower slope is dominated by broad, laterally continuous, allochthonous salt sheets (10³ km²) with moderate to thin sediment cover. The upper slope contains both of these structural styles plus intermediate size (10-10² km²) salt ridges and massifs. Observations made during this study suggest that differential sediment loading is the mechanism causing the changes in structural style. A Loading/Dissection model is presented to explain the formation of the three primary salt structural styles, their genetic relationship, and their observed distribution. Differential loading has dissected large salt sheets into numerous smaller and irregularly shaped ridges and stocks (like those found on the upper slope). Salt found on the upper slope originated in the Jurassic Louann Formation, but is now surrounded by Pleistocene age sediments. To achieve this relationship, it appears that some Jurassic salt has undergone at least two cycles of sediment loading and consequent diapirism. Salt/sediment relationships suggest that virtually all of the mapped salt is allochthonous. Repetitive sediment loading and salt structural development has not been previously documented and represents a step beyond the limits of current salt structural models. / text
6

Tide-topography coupling on a continental slope

Kelly, Samuel M. 24 January 2011 (has links)
Tide-topography coupling is important for understanding surface-tide energy loss, the intermittency of internal tides, and the cascade of internal-tide energy from large to small scales. Although tide-topography coupling has been observed and modeled for 50 years, the identification of surface and internal tides over arbitrary topography has not been standardized. Here, we begin by examining five surface/internal-tide decompositions and find that only one is (i) consistent with the normal-mode description of tides over a flat bottom, (ii) produces a physically meaningful depth-structure of internal-tide energy flux, and (iii) results in an established expression for internal-tide generation. Next, we examine the expression for internal-tide generation and identify how it is influenced by remotely-generated shoaling internal tides. We show that internal-tide generation is subject to both resonance and intermittency, and can not always be predicted from isolated regional models. Lastly, we quantify internal-tide generation and scattering on the Oregon Continental slope. First, we derive a previously unpublished expression for inter-modal energy conversion. Then we evaluate it using observations and numerical simulations. We find that the surface tide generates internal tides, which propagate offshore; while at the same time, low-mode internal tides shoal on the slope, scatter, and drive turbulent mixing. These results suggest that internal tides are unlikely to survive reflection from continental slopes, and that continental margins play an important role in deep-ocean tidal-energy dissipation. / Graduation date: 2011
7

Modeling Fluid Flow Effects on Shallow Pore Water Chemistry and Methane Hydrate Distribution in Heterogeneous Marine Sediment

Chatterjee, Sayantan 06 September 2012 (has links)
The depth of the sulfate-methane transition (SMT) above gas hydrate systems is a direct proxy to interpret upward methane flux and hydrate saturation. However, two competing reaction pathways can potentially form the SMT. Moreover, the pore water profiles across the SMT in shallow sediment show broad variability leading to different interpretations for how carbon, including CH4, cycles within gas-charged sediment sequences over time. The amount and distribution of marine gas hydrate impacts the chemistry of several other dissolved pore water species such as the dissolved inorganic carbon (DIC). A one-dimensional (1-D) numerical model is developed to account for downhole changes in pore water constituents, and transient and steady-state profiles are generated for three distinct hydrate settings. The model explains how an upward flux of CH4 consumes most SO42- at a shallow SMT implying that anaerobic oxidation of methane (AOM) is the dominant SO42- reduction pathway, and how a large flux of 13C-enriched DIC enters the SMT from depth impacting chemical changes across the SMT. Crucially, neither the concentration nor the d13C of DIC can be used to interpret the chemical reaction causing the SMT. The overall thesis objective is to develop generalized models building on this 1-D framework to understand the primary controls on gas hydrate occurrence. Existing 1-D models can provide first-order insights on hydrate occurrence, but do not capture the complexity and heterogeneity observed in natural gas hydrate systems. In this study, a two-dimensional (2-D) model is developed to simulate multiphase flow through porous media to account for heterogeneous lithologic structures (e.g., fractures, sand layers) and to show how focused fluid flow within these structures governs local hydrate accumulation. These simulations emphasize the importance of local, vertical, fluid flux on local hydrate accumulation and distribution. Through analysis of the fluid fluxes in 2-D systems, it is shown that a local Peclet number characterizes the local hydrate and free gas saturations, just as the Peclet number characterizes hydrate saturations in 1-D, homogeneous systems. Effects of salinity on phase equilibrium and co-existence of hydrate and gas phases can also be investigated using these models. Finally, infinite slope stability analysis assesses the model to identify for potential subsea slope failure and associated risks due to hydrate formation and free gas accumulation. These generalized models can be adapted to specific field examples to evaluate the amount and distribution of hydrate and free gas and to identify conditions favorable for economic gas production.
8

Dynamics of laboratory models of the wind-driven ocean circulation

Kiss, Andrew Elek, Andrew.Kiss@anu.edu.au January 2001 (has links)
This thesis presents a numerical exploration of the dynamics governing rotating flow driven by a surface stress in the " sliced cylinder " model of Pedlosky & Greenspan (1967) and Beardsley (1969), and its close relative, the " sliced cone " model introduced by Griffiths & Veronis (1997). The sliced cylinder model simulates the barotropic wind-driven circulation in a circular basin with vertical sidewalls, using a depth gradient to mimic the effects of a gradient in Coriolis parameter. In the sliced cone the vertical sidewalls are replaced by an azimuthally uniform slope around the perimeter of the basin to simulate a continental slope. Since these models can be implemented in the laboratory, their dynamics can be explored by a complementary interplay of analysis and numerical and laboratory experiments. ¶ In this thesis a derivation is presented of a generalised quasigeostrophic formulation which is valid for linear and moderately nonlinear barotropic flows over large-amplitude topography on an f-plane, yet retains the simplicity and conservation properties of the standard quasigeostrophic vorticity equation (which is valid only for small depth variations). This formulation is implemented in a numerical model based on a code developed by Page (1982) and Becker & Page (1990). ¶ The accuracy of the formulation and its implementation are confirmed by detailed comparisons with the laboratory sliced cylinder and sliced cone results of Griffiths (Griffiths & Kiss, 1999) and Griffiths & Veronis (1997), respectively. The numerical model is then used to provide insight into the dynamics responsible for the observed laboratory flows. In the linear limit the numerical model reveals shortcomings in the sliced cone analysis by Griffiths & Veronis (1998) in the region where the slope and interior join, and shows that the potential vorticity is dissipated in an extended region at the bottom of the slope rather than a localised region at the east as suggested by Griffiths & Veronis (1997, 1998). Welander's thermal analogy (Welander, 1968) is used to explain the linear circulation pattern, and demonstrates that the broadly distributed potential vorticity dissipation is due to the closure of geostrophic contours in this geometry. ¶ The numerical results also provide insight into features of the flow at finite Rossby number. It is demonstrated that separation of the western boundary current in the sliced cylinder is closely associated with a " crisis " due to excessive potential vorticity dissipation in the viscous sublayer, rather than insufficient dissipation in the outer western boundary current as suggested by Holland & Lin (1975) and Pedlosky (1987). The stability boundaries in both models are refined using the numerical results, clarifying in particular the way in which the western boundary current instability in the sliced cone disappears at large Rossby and/or Ekman number. A flow regime is also revealed in the sliced cylinder in which the boundary current separates without reversed flow, consistent with the potential vorticity " crisis " mechanism. In addition the location of the stability boundary is determined as a function of the aspect ratio of the sliced cylinder, which demonstrates that the flow is stabilised in narrow basins such as those used by Beardsley (1969, 1972, 1973) and Becker & Page (1990) relative to the much wider basin used by Griffiths & Kiss (1999). ¶ Laboratory studies of the sliced cone by Griffiths & Veronis (1997) showed that the flow became unstable only under anticyclonic forcing. It is shown in this thesis that the contrast between flow under cyclonic and anticyclonic forcing is due to the combined effects of the relative vorticity and topography in determining the shape of the potential vorticity contours. The vorticity at the bottom of the sidewall smooths out the potential vorticity contours under cyclonic forcing, but distorts them into highly contorted shapes under anticyclonic forcing. In addition, the flow is dominated by inertial boundary layers under cyclonic forcing and by standing Rossby waves under anticyclonic forcing due to the differing flow direction relative to the direction of Rossby wave phase propagation. The changes to the potential vorticity structure under strong cyclonic forcing reduce the potential vorticity changes experienced by fluid columns, and the flow approaches a steady free inertial circulation. In contrast, the complexity of the flow structure under anticyclonic forcing results in strong potential vorticity changes and also leads to barotropic instability under strong forcing. ¶ The numerical results indicate that the instabilities in both models arise through supercritical Hopf bifurcations. The two types of instability observed by Griffiths & Veronis (1997) in the sliced cone are shown to be related to the western boundary current instability and " interior instability " identified by Meacham & Berloff (1997). The western boundary current instability is trapped at the western side of the interior because its northward phase speed exceeds that of the fastest interior Rossby wave with the same meridional wavenumber, as discussed by Ierley & Young (1991). ¶ Numerical experiments with different lateral boundary conditions are also undertaken. These show that the flow in the sliced cylinder is dramatically altered when the free-slip boundary condition is used instead of the no-slip condition, as expected from the work of Blandford (1971). There is no separated jet, because the flow cannot experience a potential vorticity " crisis " with this boundary condition, so the western boundary current overshoots and enters the interior from the east. In contrast, the flow in the sliced cone is identical whether no-slip, free-slip or super-slip boundary conditions are applied to the horizontal flow at the top of the sloping sidewall, except in the immediate vicinity of this region. This insensitivity results from the extremely strong topographic steering near the edge of the basin due to the vanishing depth, which demands a balance between wind forcing and Ekman pumping on the upper slope, regardless of the lateral boundary condition. The sensitivity to the lateral boundary condition is related to the importance of lateral friction in the global vorticity balance. The integrated vorticity must vanish under the no-slip condition, so in the sliced cylinder the overall vorticity budget is dominated by lateral viscosity and Ekman friction is negligible. Under the free-slip condition the Ekman friction assumes a dominant role in the dissipation, leading to a dramatic change in the flow structure. In contrast, the much larger depth variation in the sliced cone leads to a global vorticity balance in which Ekman friction is always dominant, regardless of the boundary condition.

Page generated in 0.099 seconds