• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation et simulation d'une station mono-opérateur pour le contrôle de drones et la planification de trajectoire / Modeling and simulation of a UAV ground control station for single-operator and path planning

Ajami, Alain 03 October 2013 (has links)
Ce travail s’inscrit dans le projet plus global SHARE dont l’objectif principal est de concevoir une station de contrôle sol universelle mono-opérateur de nouvelle génération pour le contrôle et la commande de drones à voilure fixe et voilure tournante.L’objectif de cette thèse est de développer un simulateur générique de la station de contrôle capable de simuler en temps réels les différents types de drones, les capteurs embarqués (caméra), l’environnement et les différentes missions militaires définies par le standard STANAG 4586. Après une modélisation des différentes parties de la station, nous présentons l’architecture adoptée pour le simulateur et le module de contrôle. Ce dernier est divisé en plusieurs niveaux hiérarchiques, dont le niveau supérieur contient les algorithmes de planification de trajectoire pour les drones à voilure fixe HALE (haute altitude, longue endurance). Ces algorithmes servent à calculer un chemin admissible entre un point de départ et un point d’arrivée en minimisant une fonction de coût.Enfin nous avons développé un système d’aide à la décision pour la gestion en ligne des missions, capable de réaliser une sélection d’objectifs, et une sélection du meilleur chemin proposé par les algorithmes de planification de trajectoire. Cet outil a pour objectif d’aider l’opérateur de la station à prendre la meilleure décision en maximisant les récompenses obtenues lors de la réalisation des objectifs et en minimisant certains critères tels que la consommation des ressources, le danger, les conditions météorologiques, etc. / The presented work is part of a larger project called SHARE, which consists in developing a universal new generation ground control station for the monitoring and the control of fixed and rotary wing UAVs (Unmanned Aerial Vehicle).The objective of this PhD thesis is to develop a generic ground control station simulator capable of simulating in real time different types of UAVs, onboard sensors, several flight environments, and various military missions which are defined according to the STANAG 4586 standard. First, we introduce the model of the different parts of the station, and then we present the architecture adopted for the simulator and the control module. The latter is divided into several hierarchical levels; the upper level contains the path planning algorithms for fixed wing HALE (High Altitude, Long Endurance) UAV. These algorithms are used to calculate an admissible path between initial and final position by minimizing a cost function.Finally, in order to manage missions online, we developed a decision support system that is capable of performing a variety of objectives. This system also supplies the operator the best paths proposed by planning algorithms. This tool aims to help the station operator to make the decision by maximizing the rewards obtained during the achieving the objectives and minimizing certain criteria (resource consumption, danger, weather,..).
2

Inverse optimal control for redundant systems of biological motion / Contrôle optimal inverse de systèmes de mouvements biologiques redondants

Panchea, Adina 10 December 2015 (has links)
Cette thèse aborde les problèmes inverses de contrôle optimal (IOCP) pour trouver les fonctions de coûts pour lesquelles les mouvements humains sont optimaux. En supposant que les observations de mouvements humains sont parfaites, alors que le processus de commande du moteur humain est imparfait, nous proposons un algorithme de commande approximative optimale. En appliquant notre algorithme pour les observations de mouvement humaines collectées: mouvement du bras humain au cours d'une tâche de vissage industrielle, une tâche de suivi visuel d’une cible et une tâche d'initialisation de la marche, nous avons effectué une analyse en boucle ouverte. Pour les trois cas, notre algorithme a trouvé les fonctions de coût qui correspondent mieux ces données, tout en satisfaisant approximativement les Karush-Kuhn-Tucker (KKT) conditions d'optimalité. Notre algorithme offre un beau temps de calcul pour tous les cas, fournir une opportunité pour son utilisation dans les applications en ligne. Pour la tâche de suivi visuel d’une cible, nous avons étudié une modélisation en boucle fermée avec deux boucles de rétroaction PD. Avec des données artificielles, nous avons obtenu des résultats cohérents en termes de tendances des gains et les critères trouvent par notre algorithme pour la tâche de suivi visuel d’une cible. Dans la seconde partie de notre travail, nous avons proposé une nouvelle approche pour résoudre l’IOCP, dans un cadre d'erreur bornée. Dans cette approche, nous supposons que le processus de contrôle moteur humain est parfait tandis que les observations ont des erreurs et des incertitudes d'agir sur eux, étant imparfaite. Les erreurs sont délimitées avec des limites connues, sinon inconnu. Notre approche trouve l'ensemble convexe de de fonction de coût réalisables avec la certitude qu'il comprend la vraie solution. Nous numériquement garanties en utilisant des outils d'analyse d'intervalle. / This thesis addresses inverse optimal control problems (IOCP) to find the cost functions for which the human motions are optimal. Assuming that the human motion observations are perfect, while the human motor control process is imperfect, we propose an approximately optimal control algorithm. By applying our algorithm to the human motion observations collected for: the human arm trajectories during an industrial screwing task, a postural coordination in a visual tracking task and a walking gait initialization task, we performed an open loop analysis. For the three cases, our algorithm returned the cost functions which better fit these data, while approximately satisfying the Karush-Kuhn-Tucker (KKT) optimality conditions. Our algorithm offers a nice computational time for all cases, providing an opportunity for its use in online applications. For the visual tracking task, we investigated a closed loop modeling with two PD feedback loops. With artificial data, we obtained consistent results in terms of feedback gains’ trends and criteria exhibited by our algorithm for the visual tracking task. In the second part of our work, we proposed a new approach to solving the IOCP, in a bounded error framework. In this approach, we assume that the human motor control process is perfect while the observations have errors and uncertainties acting on them, being imperfect. The errors are bounded with known bounds, otherwise unknown. Our approach finds the convex hull of the set of feasible cost function with a certainty that it includes the true solution. We numerically guaranteed this using interval analysis tools.

Page generated in 0.1051 seconds