• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Safety-critical Geometric Control Design with Application to Aerial Transportation

Wu, Guofan 01 December 2017 (has links)
Safety constraints are ubiquitous in many robotic applications. For instance, aerial robots such as quadrotors or hexcoptors need to realize fast collision-free flight, and bipedal robots have to choose their discrete footholds properly to gain the desired friction and pressure contact forces. In this thesis, we address the safety critical control problem for fully-actuated and under-actuated mechanical systems. Since many mechanical systems evolve on nonlinear manifolds, we extend the concept of Control Barrier Function to a new concept called geometric Control Barrier Function which is specifically designed to handle safety constraints on manifolds. This type of Control Barrier Function stems from geometric control techniques and has a coordinate free and compact representation. In a similar fashion, we also extend the concept of Control Lyapunov Function to the concept of geometric Control Lyapunov Function to realize tracking on the manifolds. Based on these new geometric versions of CLF and CBF, we propose a general control design method for fully-actuated systems with both state and input constraints. In this CBF-CLF-QP control design, the control input is computed based on a state-dependent Quadratic Programming (QP) where the safety constraints are strictly enforced using geometric CBF but the tracking constraint is imposed through a type of relaxation. Through this type of relaxation, the controller could still keep the system state safe even in the cases when the reference is unsafe during some time period. For a single quadrotor, we propose the concept of augmented Control Barrier Function specifically to let it avoid external obstacles. Using this augmented CBF, we could still utilize the idea of CBF-CLF-QP controller in a sequential QP control design framework to let this quadrotor remain safe during the flight. In meantime, we also apply the geometric control techniques to the aerial transportation problem where a payload is carried by multiple quadrotors through cable suspension. This type of transportation method allows multiple quadrotors to share the payload weight, but introduces internal safety constraints at the same time. By employing both linear and nonlinear techniques, we are able to carry the payload pose to follow a pre-defined reference trajectory.
2

Controlling Autonomous Baker Robot Using Signal Temporal Logic and Control Barrier Functions

Bernpaintner, Gustav, Allen, Marcus January 2022 (has links)
Autonomous systems are slowly moving into the mainstream with things like self driving cars and autonomous robots in storage facilities already in use today. The aim of this project is to simulate a virtual bakery with a baker-robot (agent)that is able to complete recipes within strict deadlines.Signal temporal logic (STL) is used to define instructions that can be understood by the agent. In order to carry out these instructions, a control barrier function (CBF) is used.CBFs are time and state dependent, are used to describe the desired behavior of the agent, and are designer made. If the CBF corresponding to the task is non-negative from beginning to end during the task, the task has been completed successfully.A virtual robot was used in this project and was tasked with moving to and staying in different areas, which represents picking up and dropping off ingredients, all whilst staying within the boundaries of the bakery. The focus of this work is on completing the large amount (10+) of sequential tasks required to completea recipe. The CBF remained positive during the task, and the task was completed successfully. / Autonoma system börjar ta mer och mer plats i vardagen med saker som självkörande bilar och autonoma robotar i lagerlokaler som redan används idag. Syftet med det här projektet är att simulera ett virtuellt bageri med en bagarrobot (agent) som kan laga recept under strikta tidskrav. Signal temporal logic (STL) används för att definiera instruktioner som kan förstås av agenten. För att genomföra dessa instruktioner korrekt används en control barrier function (CBF). CBF:er är tidsoch tillståndsberoende, används för att beskriva agentens önskade beteende, och är skapade av en designer. Om CBF:en är positiv från början till slut under uppgiftens gång så har uppgiften genomförts som önskat. En virtuell robot användes i det här projektet och fick i uppdrag att flytta till och stanna inom olika områden, vilket representerar att plocka upp och lämna ingredienser, allt medan den vistas inom bageriets gränser. Fokus för detta arbete ligger på att slutföra den stora mängd (10+) av sekventiella uppgifter sim krävs för att laga ett recept. CBF:en var positiv under hela uppgiften, och uppgiften genomfördes framgångsrikt. / Kandidatexjobb i elektroteknik 2022, KTH, Stockholm
3

Resilient planning, task assignment and control for multi-robot systems against plan-deviation attacks

Yang, Ziqi 30 August 2023 (has links)
The security of multi-robot systems is critical in various applications such as patrol, transportation, and search and rescue operations, where they face threats from adversaries attempting to gain control of the robots. These compromised robots are significant threats as they allow attackers to steer robots towards forbidden areas without being detected, potentially causing harm or compromising the mission. To address this problem, we propose a resilient planning, task assignment, and control framework. The proposed framework builds a multi-robot plan where robots are designed to get close enough to other robots according to a co-observation schedule, in order to mutually check for abnormal behaviors. For the first part of the thesis, we propose an optimal trajectory solver based on the alternating direction method of multipliers (ADMM) to generate multi-agent trajectories that satisfy spatio-temporal requirements introduced by the co-observation schedules. As part of the formulation, we provide a new reachability constraint to guarantee that, despite adversarial movement by the attacker, a compromised robot cannot reach forbidden areas between co-observations without being detected. In the second part of the thesis, to further enhance the system's performance, reliability, and robustness, we propose to deploy multiple robots on each route to form sub-teams. A new cross-trajectory co-observation scheme between sub-teams is introduced that preserves the optimal unsecured trajectories. The new planner ensures that at least one robot in each sub-team sticks to the planned trajectories, while sub-teams can constantly exchange robots during the task introducing additional co-observations that can secure originally unsecured routes. We show that the planning of cross-trajectory co-observations can be transformed into a network flow problem and solved using traditional linear program technique. In the final part of the thesis, we show that the introduction of sub-teams also improves the multi-robot system's robustness to unplanned situations, allowing servicing unplanned online events without breaking the security requirements. This is achieved by a distributed task assignment algorithm based on consensus ADMM which can handle tasks with different priorities. The assignment result and security requirements are formulated as spatio-temporal schedules and guaranteed through control barrier function (CBF) based controls.
4

Intelligent Drone Swarms : Motion planning and safe collision avoidance control of autonomous drone swarms

Gunnarsson, Hilding, Åsbrink, Adam January 2022 (has links)
The use of unmanned aerial vehicles (UAV), so-called drones, has been growingrapidly in the last decade. Today, they are used for, among other things, monitoring missions and inspections of places that are difficult for people to access. Toefficiently and robustly execute these types of missions, a swarm of drones maybe used, i.e., a collection of drones that coordinate together. However, this introduces new requirements on what solutions are used for control and navigation. Two important aspects of autonomous navigation of drone swarms are formationcontrol and collision avoidance. To manage these problems, we propose four different solution algorithms. Two of them use leader-follower control to keep formation, Artificial PotentialField (APF) for path planning and Control Barrier Function (CBF)/ExponentialControl Barrier Function (ECBF) to guarantee that the control signal is safe i.e.the drones keep the desired safety distance. The other two solutions use an optimal control problem formulation of a motion planning problem to either generate open-loop or closed-loop trajectories with a linear quadratic regulator (LQR)controller for trajectory following. The trajectories are optimized in terms of timeand formation keeping. Two different controllers are used in the solutions. Oneof which uses cascade PID control, and the other uses a combination of cascadePID control and LQR control. As a way to test our solutions, a scenario is created that can show the utilityof the presented algorithms. The scenario consists of two drone swarms that willtake on different missions executed in the same environment, where the droneswarms will be on a direct collision course with each other. The implementedsolutions should keep the desired formation while smoothly avoiding collisionsand deadlocks. The tests are conducted on real UAVs, using the open sourceflying development platform Crazyflie 2.1 from Bitcraze AB. The resulting trajectories are evaluated in terms of time, path length, formation error, smoothnessand safety.  The obtained results show that generating trajectories from an optimal control problem is superior compared to using APF+leader-follower+CBF/ECBF. However, one major advantage of the last-mentioned algorithms is that decision making is done at every time step making these solutions more robust to disturbancesand changes in the environment.
5

An input-sample method for zonotopic obstacle avoidance with discrete-time control barrier functions

Xiong, Xiong January 2022 (has links)
In this thesis, we consider the motion planning problem for an autonomous vehicle in an obstacle-cluttered environment approximated by zonotopes, and we propose an input sampling algorithm leveraging discrete-time control barrier function conditions (DCBF). Specifically, an optimization-based control barrier function that takes into account the geometric shapes of the vehicle and obstacles is constructed and verified. We then propose a discrete-time CBF that guarantees the safety during the inter-sampling intervals. It is worth noting that we do not need an explicit expression of the barrier function, but instead, an numerically efficient algorithm is proposed to evaluate and implement the CBF/DCBF conditions. Finally, an RRT algorithm is incorporated that draws the input sampling from the input space restricted to DCBF condition. Thanks to our proposed DCBF and input sampling method approach, our proposed method is less conservative, computationally efficient and guarantees the safety during the sampling intervals. Numerical simulation with unicycle model has been done to demonstrate the favorable properties of the algorithm. / I det här dokumentet tar vi upp problemet med rörelseplanering för ett autonomt fordon i en hinderfylld miljö som approximeras av zonotoper och föreslår en algoritm för insatsprovtagning som utnyttjar diskreta villkor för kontrollbarriärfunktioner (DCBF). Vi konstruerar och verifierar en optimeringsbaserad kontrollbarriärfunktion som tar hänsyn till fordonets och hindrens geometriska former. Vi föreslår sedan en diskret CBF i diskret tid som garanterar säkerheten under intervallerna mellan provtagningarna. Det är värt att notera att vi inte behöver ett explicit uttryck för barriärfunktionen, utan istället föreslås en numeriskt effektiv algoritm för att utvärdera och genomföra CBF/DCBF-villkoren. Slutligen införlivas en RRT-algoritm som drar inmatningsprovtagningen från inmatningsutrymmet som är begränsat till DCBF-villkoret. Tack vare vår föreslagna metod för DCBF och insatsprovtagning är vår föreslagna metod mindre konservativ, beräkningsmässigt effektiv och garanterar säkerheten under provtagningsintervallerna. Numerisk simulering med encykelmodell har gjorts för att verifiera algoritmen.
6

On the Equivalence of Time-Varying CBF-Based Control and Prescribed Performance Control : Conversion and Qualitative Comparison / Om likvärdigheten mellan tidsvarierande CBF-baserad kontroll och kontroll av föreskrivna prestationer : Konvertering och kvalitativ jämförelse

Namerikawa, Ryo January 2023 (has links)
These days, a wide range of autonomous systems, such as automobiles, delivery drones, and embedded household systems, are becoming more and more common in our society. This trend is projected to continue in the future. To effectively manage these dynamic systems, ensuring their safe operation is crucial for the well-being of our lives. Control of safety-critical systems has gained significant attention in recent years, particularly in the field of nonlinear control. While the mathematical tools for characterizing safety are well-established, there are still numerous challenges to be addressed when it comes to developing methodologies for synthesizing nonlinear control systems. This report investigates the similarity between the two control schemes, the prescribed performance control and control barrier function. Its purpose is to shed light on the development of control methodology in safetycritical systems. While both methods have been successfully constructed and developed recently, there is no existing report that clarifies their similarities. To gain a deeper understanding of the latest safety-critical control and investigate these similarities, this report aims to provide interesting insights and contribute to the further development of methodology. The key insight arises from the fact that the prescribed performance control can be considered a method based on barrier functions. Consequently, it can be regarded as a control barrier-based controller. In order to demonstrate the similarities and make a comparison between the two, a unified problem setting is presented. Once we have properly converted the problem, we can proceed with a comparison using numerical simulations. The results presented in this report demonstrate that the prescribed performance controller can be implemented using separate reciprocal CBF methods. Furthermore, it shows that the performance achieved is comparable to that of the CLF-CBF QP, which utilizes optimization techniques to ensure stability and safety requirements. These findings raise new questions regarding the relationship between these two approaches. Ultimately, the report delves into a deeper understanding of how model-free methods achieve superior performance compared to model-based methods that heavily rely on optimization. / Idag blir ett brett spektrum av autonoma system, som bilar, leveransdrönare och inbyggda hushållssystem, allt vanligare i vårt samhälle. Denna trend förväntas fortsätta i framtiden. För att effektivt hantera dessa dynamiska system är det avgörande att säkerställa att de fungerar på ett säkert sätt. Styrning av säkerhetskritiska system har fått stor uppmärksamhet under de senaste åren, särskilt inom området icke-linjär styrning. Även om de matematiska verktygen för att karakterisera säkerhet är väletablerade, finns det fortfarande många utmaningar att ta itu med när det gäller att utveckla metoder för att syntetisera olinjära styrsystem. Denna rapport undersöker likheten mellan de två kontrollsystemen, den föreskrivna prestandakontrollen och kontrollbarriärfunktionen. Syftet är att belysa utvecklingen av styrmetodik i säkerhetskritiska system. Även om båda metoderna har konstruerats och utvecklats framgångsrikt på senare tid, finns det ingen befintlig rapport som klargör deras likheter. För att få en djupare förståelse för den senaste säkerhetskritiska kontrollen och undersöka dessa likheter, syftar denna rapport till att ge intressanta insikter och bidra till den fortsatta utvecklingen av metodiken. Den viktigaste insikten härrör från det faktum att den föreskrivna prestandakontrollen kan betraktas som en metod baserad på barriärfunktioner. Följaktligen kan den betraktas som en styrbarriärbaserad styrenhet. För att visa på likheterna och göra en jämförelse mellan de två presenteras en enhetlig problemställning. När vi har omvandlat problemet på rätt sätt kan vi gå vidare med en jämförelse med hjälp av numeriska simuleringar. De resultat som presenteras i denna rapport visar att den föreskrivna prestandaregulatorn kan implementeras med separata reciproka CBF-metoder. Dessutom visar de att den uppnådda prestandan är jämförbar med den för CLFCBF QP, som använder optimeringstekniker för att säkerställa stabilitets- och säkerhetskrav. Dessa resultat väcker nya frågor om förhållandet mellan dessa två metoder. I slutändan ger rapporten en djupare förståelse för hur modellfria metoder uppnår överlägsen prestanda jämfört med modellbaserade metoder som i hög grad förlitar sig på optimering.
7

Multi-Robot Motion Planning With Control Barrier Functions for Signal Temporal Logic Tasks

Brage, Cecilia, Johansson, Johanna January 2021 (has links)
Autonomous robots have the potential to accomplisha wide variety of assignments. For this to work in reality, therobots need to be able to perform specific tasks while safety forboth them and their environment is ensured. Signal temporallogic (STL) was used to define timed tasks for the agents toperform and control barrier functions (CBFs) were used to designa controller for their movements. In this paper, a set of STL taskswere considered, which two robots were instructed to satisfy in asimulation of a warehouse environment. The two agents startednext to each other, then the set of tasks instructed them to move totwo separate areas, then meet up again and move in a formationback towards their starting area. Control barrier functions wereemployed to ensure the satisfaction of the set of STL tasks.The agents designed their actions towards satisfying the giventasks without considering a safety distance to the other robot atfirst. To later ensure safety, a collision avoidance mechanism wasintroduced. The scenario without collision avoidance proved moreeffective paths for the agents. They moved to satisfy the tasks withless disturbance than the scenario where collision avoidance wasconsidered. However, the scenario with the collision avoidancemechanism proved successful and the agents satisfied their taskswithout colliding with each other. / Autonoma robotar har potential att utföra en stor mängd olika uppgifter. För att detta ska fungera i verkligheten, behöver robotarna kunna genomföra specifika uppgifter medans både deras egen och omgivningens säkerhet är säkerställd. Signal temporal logic (STL) användes för att definiera tidsinställda uppgifter åt robotarna att utföra och control barrier functions (CBFs) användes för att designa en controller för deras rörelser. I den här rapporten betraktades en uppsättning av STL-uppgifter, vilka två robotar instruerades att uppfylla i en simulering av en lagermiljö. De två robotarna startade bredvid varandra, sen instruerade STL-uppgifterna dem att röra sig till två separata områden, sen mötas upp igen och röra sig i formation tillbaka mot sitt startområde. Control barrier functions användes för att garantera uppfyllandet av STL-uppgifterna. Robotarna anpassade sina rörelser till att uppfylla de givna uppgifterna, först utan hänsyn till någon säkerhetsmarginal till den andra roboten. För att senare garantera säkerhet introducerades en extra mekanism för att undvika kollision. Scenariot utan att undvika kollision visade på effektivare rörelsebanor hos robotarna. De rörde sig mot att uppfylla uppgifterna med färre störningar än scenariot då kollision aktivt undveks. Scenariot med mekanismen för att dock framgångsrikt och robotarna e sina uppgifter utan att kollidera med varandra. / Kandidatexjobb i elektroteknik 2021, KTH, Stockholm
8

Control Barrier Functions for Formation Control of Leader-follower Multi-agent Systems / Kontrollbarriärfunktioner för Formationskontroll av Leader-follower Multi-agent System

Sun, Tianrun January 2023 (has links)
This thesis studies formation control for a class of general leader-follower multi-agent systems with Control Barrier Functions (CBFs) such that connectivity maintenance is fulfilled for all the neighboring agents. In leader-follower multi-agent systems, only the leader agents are controlled by the externally designed input, while the followers are guided through their dynamic couplings with the neighboring agents. The main problem is how to keep all adjacent agents maintain within the communication distance during the formation process. In this thesis, Control Barrier Functions (CBFs) are utilized in order to maintain connectivity among the neighboring agents. This thesis firstly introduces a general first-order leader-follower multi-agent systems with proper connectivity constrains. All edges in the system are divided into three categories: follower-follower edges, leader-follower edges and leader-leader edges. Three different kinds of edges are discussed individually. For each category, the relevant topological conditions and control barrier functions are defined and proved for both tree graphs and general graphs. Several simulation examples are implemented to verify the developed results. Both theory and simulation results show that the developed results are a strong support for the formation control of leader-follower system in order to achieve connectivity maintenance. / Denna avhandling studerar formationskontroll för en klass av generella ledare-följare multi-agent-system med kontrollbarriärfunktioner (CBFs) så att anslutningsunderhållet uppfylls för alla angränsande agenter. I ledar-följare multi-agent-system är det bara ledaragenterna som styrs av den externt utformade ingången, medan följaren guidas genom sina dynamiska kopplingar med grannagenterna. Huvudproblemet är hur man kan hålla alla intilliggande agenter inom kommunikationsavståndet under bildningsprocessen. I det här examensarbetet används kontrollbarriärfunktioner (CBF) för att upprätthålla förbindelser mellan angränsande agenter. Detta examensarbete introducerar först ett allmänt första ordningens ledare-följare multi-agentsystem med korrekta anslutningsbegränsningar. Alla kanter i systemet är indelade i tre kategorier: efterföljarkanter, ledare-följarkanter och ledare-ledarkanter. Tre olika sorters kanter diskuteras individuellt. För varje kategori definieras och bevisas de relevanta topologiska förhållandena och kontrollbarriärfunktionerna för både trädgrafer och allmänna grafer. Flera simuleringsexempel implementeras för att verifiera de framtagna resultaten. Både teori- och simuleringsresultat visar att de utvecklade resultaten är ett starkt stöd för bildandet av ledare-följare-system för att uppnå anslutningsunderhåll
9

Robust Safe Control for Automated Driving Systems With Perception Uncertainties / Robust Säker Styrning för Automatiserade Körsystem med Avseende på Perceptions Osäkerheter

Feng Yu, Yan January 2022 (has links)
Autonomous Driving Systems (ADS), a subcategory of Cyber-Physical Systems (CPS) are becoming increasingly popular with ubiquitous deployment. They provide advanced operational functions for perception and control, but this also raises the question of their safety capability. Such questions include if the vehicle can stay within its lane, keep a safe distance from the leading vehicle, or avoid obstacles, especially under the presence of uncertainties. In this master thesis, the operational safety of ADS will be addressed, more specifically on the Adaptive Cruise Control (ACC) system by modeling an optimal control problem based on Control Barrier Function (CBF) unified with Model Predictive Control (MPC). The corresponding optimal control problem is robust against measurement uncertainties for an Autonomous Vehicle (AV) driving on a highway, where the measurement uncertainties will represent the common faults in the perception system of the AV. A Kalman Filter (KF) is also added to the system to investigate the performance difference. The resulting framework is implemented and evaluated on a simulation scenario created in the open-source autonomous driving simulator CARLA. Simulations show that MPC-CBF is indeed robust against measurement uncertainties for well-selected horizon and slack variable values. The simulations also show that adding a KF improves the overall performance. The higher the horizon, the more confident the system becomes as the distance to the leading vehicle decreases. However, this may cause infeasibility where there are no solutions to the optimal control problem during sudden braking as the AV cannot brake fast enough before it crashes. Meanwhile, the smaller the slack variable, the more restrictive becomes CBF where it impacts more on the control input than desired which could also cause infeasibility. The results of this thesis will help to facilitate safety-critical CPS development to be deployed in real-world applications. / Autonoma körsystem (ADS), som är en del av cyberfysiska system (CPS), har blivit alltmer populär med allestädes närvarande användning. Det bidra med avancerade operativa funktioner för perception och styrning, men samtidig väcker detta också frågan om dess säkerhetsförmåga. Sådana frågor inkluderar om fordonet kan hålla sig inom sitt körfält, om det kan hålla ett säkert avstånd till det ledande fordonet eller om det kan undvika hinder, speciellt under osäkerheter hos systemet. I detta examensarbete kommer driftsäkerheten hos ADS att behandlas, mer specifik på adaptiv farthållare (ACC) genom att modellera ett optimalt kontrollproblem baserat på kontrollbarriärfunktion (CBF) förenat med modellförutsägande styrning (MPC). Motsvarande optimalt kontrollproblem är robust mot mätosäkerheter för ett autonomt fordon som kör på en motorväg, där mätosäkerheterna representerar vanliga fel i AV:s perceptionssystem. Ett Kalmanfilter (KF) läggs också till i systemet för att undersöka skillnaden i prestanda. Det resulterande ramverket implementeras och utvärderas på ett simuleringsscenario som skapats i den öppna källkodssimulatorn för autonom körning CARLA. Simulationer visar att MPC-CBF är robust mot mätosäkerheter för väl valda värden för horisont och slackvariabler. Det visar också att systemets prestanda förbättrats ännu mer om ett KF läggs till. Ju större horisont, desto mer självsäkert blir systemet när avståndet till det ledande fordonet minskar. Detta kan dock leda till att det inte finns några lösningar på det optimala kontrollproblemet vid plötslig inbromsning, eftersom fordonet inte hinner bromsa tillräckligt snabbt innan det kraschar. Ju mindre slackvariabeln är, desto mer restriktiv blir CBF som påverkar styrningen mer än vad som är önskvärt vilket också kan leda till olösbart optimalt kontrollproblem. Resultatet från detta examensarbete bär syftet att gynna utvecklingen av säkerhetkritisk CPS som ska användas i praktiska tillämpningar.

Page generated in 0.3623 seconds