• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 11
  • 7
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Capacity control policies in a material requirements planning production environment

Gutzmann, Kurt M. January 1983 (has links)
Two types of heuristic capacity control policies a·re evaluated with a SLAM simulation model of a materials requirements planning production system. The control policy decisions are based solely on the size of the queue, as measured in standard hours of work, at each work center in the production system. Several classes of product mixes and product structures are investigated, as well as several levels of the control parameters of each control policy. The results indicate that each control policy gives rise to a unique population of weekly labor, work in process, and inventory level. Product structure is also identified as a major variable in Materials Requirements Planning systems performance. Sensitivity analysis of the cost functions for each policy indicate the conditions under which it will minimize the sum of labor costs, work in process holding costs, and inventory holding costs. The simulation model, MRPSIM, is included with a user's guide. / M.S.
12

Energy based control system designs for underactuated robot fish propulsion

Roper, Daniel January 2013 (has links)
In nature, through millions of years of evolution, fish and cetaceans have developed fast efficient and highly manoeuvrable methods of marine propulsion. A recent explosion in demand for sub sea robotics, for conducting tasks such as sub sea exploration and survey has left developers desiring to capture some of the novel mechanisms evolved by fish and cetaceans to increase the efficiency of speed and manoeuvrability of sub sea robots. Research has revealed that interactions with vortices and other unsteady fluid effects play a significant role in the efficiency of fish and cetaceans. However attempts to duplicate this with robotic fish have been limited by the difficulty of predicting or sensing such uncertain fluid effects. This study aims to develop a gait generation method for a robotic fish with a degree of passivity which could allow the body to dynamically interact with and potentially synchronise with vortices within the flow without the need to actually sense them. In this study this is achieved through the development of a novel energy based gait generation tactic, where the gait of the robotic fish is determined through regulation of the state energy rather than absolute state position. Rather than treating fluid interactions as undesirable disturbances and `fighting' them to maintain a rigid geometric defined gait, energy based control allows the disturbances to the system generated by vortices in the surrounding flow to contribute to the energy of the system and hence the dynamic motion. Three different energy controllers are presented within this thesis, a deadbeat energy controller equivalent to an analytically optimised model predictive controller, a $H_\infty$ disturbance rejecting controller with a novel gradient decent optimisation and finally a error feedback controller with a novel alternative error metric. The controllers were tested on a robotic fish simulation platform developed within this project. The simulation platform consisted of the solution of a series of ordinary differential equations for solid body dynamics coupled with a finite element incompressible fluid dynamic simulation of the surrounding flow. results demonstrated the effectiveness of the energy based control approach and illustrate the importance of choice of controller in performance.
13

Optimizing scoped and immortal memory management in real-time Java

Hamza, Hamza January 2013 (has links)
The Real-Time Specification for Java (RTSJ) introduces a new memory management model which avoids interfering with the garbage collection process and achieves better deterministic behaviour. In addition to the heap memory, two types of memory areas are provided - immortal and scoped. The research presented in this Thesis aims to optimize the use of the scoped and immortal memory model in RTSJ applications. Firstly, it provides an empirical study of the impact of scoped memory on execution time and memory consumption with different data objects allocated in scoped memory areas. It highlights different characteristics for the scoped memory model related to one of the RTSJ implementations (SUN RTS 2.2). Secondly, a new RTSJ case study which integrates scoped and immortal memory techniques to apply different memory models is presented. A simulation tool for a real-time Java application is developed which is the first in the literature that shows scoped memory and immortal memory consumption of an RTSJ application over a period of time. The simulation tool helps developers to choose the most appropriate scoped memory model by monitoring memory consumption and application execution time. The simulation demonstrates that a developer is able to compare and choose the most appropriate scoped memory design model that achieves the least memory footprint. Results showed that the memory design model with a higher number of scopes achieved the least memory footprint. However, the number of scopes per se does not always indicate a satisfactory memory footprint; choosing the right objects/threads to be allocated into scopes is an important factor to be considered. Recommendations and guidelines for developing RTSJ applications which use a scoped memory model are also provided. Finally, monitoring scoped and immortal memory at runtime may help in catching possible memory leaks. The case study with the simulation tool developed showed a space overhead incurred by immortal memory. In this research, dynamic code slicing is also employed as a debugging technique to explore constant increases in immortal memory. Two programming design patterns are presented for decreasing immortal memory overheads generated by specific data structures. Experimental results showed a significant decrease in immortal memory consumption at runtime.
14

Direct numerical simulation of microjets for turbulent boundary layer control

Lee, Conrad Yuan Yuen 28 August 2008 (has links)
Not available / text
15

Internet Multicast Congestion Control

Onal, Kerem 01 February 2004 (has links) (PDF)
Congestion control is among the fundamental problems of Internet multicast. It is an active research area with many challenges. In this study, an introduction to Internet congestion control and a brief literature survey of current multicast congestion control protocols is presented. Then two recently proposed &ldquo / single-rate, end-to-end, rate based&rdquo / class of protocols, namely LESBCC and TFMCC are evaluated with respect to their intersession fairness (TCP-friendliness), smoothness and responsiveness criteria. Throughout the experiments, which are conducted using a widely accepted network simulation tool &lsquo / ns&rsquo / , different topologies have been employed.
16

Cellular and functional production environments: design methodology and comparison

Sarper, Hüseyin January 1988 (has links)
A hybrid methodology was developed to fairly compare functional and cellular production environments with respect to the production of machined parts which constitute the indivisible components of some final products. The methodology provides a means of designing each production environment at the lowest possible cost and then comparing the two environments with respect to cost and non-cost performance measures. The results show that the long-held belief that the cellular manufacturing or group technology method of production may be superior to that of the traditional functional or job shop layout may not be correct. A detailed comparison using four problem sets with different job and machine mixes failed to indicate a clear case in which the cellular environment performed better than the functional. The methodology consists of two stages. Stage one has six hierarchical steps which systematically determine machine requirements and layout planning of each environment through mathematical modelling. External and internal operation constraints and inputs such as stochastic daily demand and operation times were considered. Stochastic programming was used in handling uncertain daily demand and operation times by specifying a desired minimum probability of meeting the demand for each job type in both environments. The MPSIII package was used in solving large mixed integer problems that resulted once nonlinear terms, due to the chance-constrained nature of the segments of the models, were linearized. Because of the large problem sizes, MPSIII input files had to be created using FORTRAN codes. In stage two, the SIMAN simulation language was used to determine the feasibility of stage one decisions and to obtain other system information. In simulation, some approximations were made to implement stage one decisions. For example, jobs received an average processing time in each operation class area rather than the exact operation time of the specific machine type to which the jobs were assigned in stage one. The effect of material handling distances and the use of limited number of work-in-process carriers were considered. Although the methodology was mainly developed for the comparison of the two production environments, it is readily usable for individual design of either production environment. In addition to the two main stages of development, this research also required the development of two other procedures: unitizing daily demands and the modifying the previously available job/cell grouping methods. / Ph. D.
17

Autonomous air-to-air refueling : a comparison of control strategies

Venter, Jeanne Marie 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: The air-to-air refuelling of large aircraft presents challenges such as a long fuel transfer time, slow aircraft responses and a large distance between the aircraft CG and the receptacle position. This project addresses some of these issues by adding a control system to keep the receiver aircraft in the correct position relative to the tanker to enable fuel transfer. This project investigates different control strategies which are designed to control the A330-300 during refuelling at one trim condition. The controllers are based on a mathematical aircraft model which was derived from a simulation model received from Airbus. The first set of controllers uses the aircraft actuators directly. Controllers that are based on the CG dynamics and the receptacle dynamics are compared. Due to the large distance between the CG and the receptacle it was found to be essential to control the receptacle position, and not only the CG position. Also, a controller that is based on a model of the receptacle dynamics performs better. The second set of controllers uses the aircraft manual control laws as an inner loop controller. This set of controllers and the last direct actuator controller use the same axial controller that uses the engine thrust to control axial position. It was found that both the direct actuator controller and the manual control laws controller are able to keep the receptacle within the disconnect envelope in moderate turbulence. In both sets of controllers the axial controller fails to keep the receptacle reliably within the disconnect envelope in light turbulence. From the results it is concluded that both the direct actuator control and manual control laws can be used to successfully control the receptacle position in the normal and lateral positions as long as the receptacle kinematics are included in the control design. Using only the engine thrust for axial control is insufficient. Several recommendations are made to improve the axial control and also how these results can be used in future work. / AFRIKAANSE OPSOMMING: Die lug-tot-lug brandstof hervulling van groot vliegtuie het uitdagings soos ’n lang hervullingstyd, stadige vliegtuig dinamika en ’n groot afstand tussen die hervullingspoort en die vliegtuig massamiddelpunt. Hierdie projek spreek sommige van hierdie uitdagings aan deur ’n beheerstelsel by te voeg wat die vliegtuig in die korrekte posisie relatief tot die tenker hou vir brandstofoordrag om plaas te vind. Hierdie projek ondersoek verskillende beheerstrategieë wat ontwerp is om die A330- 300 te beheer by ’n enkele gestadigde toestand. Die beheerders is gebaseer op ’n wiskundige vliegtuigmodel wat vanaf ’n simulasiemodel afgelei is. Die simulasiemodel is vanaf Airbus verkry. Die eerste stel beheerders beheer direk die vliegtuig se beheeroppervlakke. Beheerders wat onderskeidelik die massamiddelpunt en die hervullingspoort beheer word vergelyk. Daar is gevind dat dit essensieel is om die hervullingspoort te beheer en nie slegs die massamiddelpunt nie, as gevolg van die groot afstand tussen hierdie twee punte. Die tweede stel beheerders gebruik die vliegtuig se eie beheerwette as ’n binnelusbeheerder en vorm self die buitelus. Albei stelle beheerders gebruik dieselfde aksiale beheerder wat enjin stukrag gebruik om die aksiale posisie te beheer. Daar is gevind dat beide stelle beheerders die hervullingspoort binne die ontkoppelingsbestek kan hou in die normale en laterale rigtings tydens matige turbulensie. In beide stelle beheerders is dit die aksiale beheerder wat faal om die hervullingspoort betroubaar in posisie te hou, selfs in ligte turbulensie. Vanaf die resultate word afgelei dat beide die direkte beheerder en die buitelusbeheerder gepas is om die laterale en normale posisiebeheer toe te pas mits die dinamika van die hervullingspoort in ag geneem word. Om slegs stukrag te gebruik vir aksiale beheer is nie voldoende nie, en verskeie voorstelle word gemaak om die aksiale beheer te verbeter in toekomstige navorsing.
18

Simulation of Attitude and Orbit Control for APEX CubeSat

de Graaf, Niels January 2020 (has links)
CubeSats are becoming a game changer in the space industry. Appearing first for univer-sity mission, its popularity is increasing for commercial use and for deep space missionssuch as the on HERA mission that will orbit in 2026 around an asteroid as part of aplanetary defence mission. Standardisation and industrial collaboration is key to a fastdevelopment, assuring the product quality and lower development expenditures.In this study the focus is set elaborating a low cost demonstrator platform to be usedfor developing and testing onboard software on physical hardware: a Hardware-Softwaretesting facility. The purpose of such a platform is to create an interactive and accessibleenvironment for developing on board software. The application chosen to be elaboratedon this platform is a module the subsystem of attitude and orbit control of the satelliteorbiting around asteroid.In order to create this platform the simulation of the asteroid environment of theCubeSat has been made using open source software libraries. During this task the per-formance of open source libraries has been compared to commercial alternatives. In thedevelopment of simulation different orbit perturbations have been studied by modellingthe asteroid as a cube or spheroid and additionally the effect of a third perturbing bodyand radiation pressure.As part of this project two microcontroller have been set up communicating using acommunication bus and communication protocols used for space applications to simulatehow the attitude and orbit control is commanded inside the CubeSat.
19

Simulation in der Computer-Chip-Produktion – Möglichkeiten und Grenzen

Schmidt, Thorsten, Rank, Sebastian, Schulze, Frank 27 September 2021 (has links)
Der Beitrag führt zuerst in die Halbleiterfertigung und die damit verbundene innerbetriebliche Logistik, dabei vor allem das Transport- und Handhabungssystem, ein. Bei der Planung und Steuerung solcher Anlagen stellen sich sehr anspruchsvolle Aufgaben, die nur mithilfe der Simulation zu lösen sind. Hierzu wird dargestellt, wie sich der Simulationseinsatz in der Halbleiterproduktion und -logistik gestaltet. Mit der Komplexität der Prozesse und Systeme wächst natürlich auch die Komplexität der eingesetzten Simulationsmodelle – auf die Frage nach einem angemessenen Abstraktionsgrad gibt es bislang jedoch keine befriedigende Antwort. Der Beitrag stellt dazu Lösungsansätze vor und zeigt, worauf künftige Forschungsarbeiten fokussieren sollten.
20

Design of an experimental simulation for a human remote control of an undersea vehicle

Takahashi, Michio. January 1979 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Mechanical Engineering, 1979 / Bibliography: leaves 38-39. / by Michio Takahashi. / M.S. / M.S. Massachusetts Institute of Technology, Department of Mechanical Engineering

Page generated in 0.077 seconds