Spelling suggestions: "subject:"kontrollvolumen"" "subject:"kontrollvolum""
11 |
Numerical Study of Conjugate Natural Convection from Discrete Heat Sources.Gdhaidh, Farouq A.S., Hussain, Khalid, Qi, Hong Sheng 01 October 2014 (has links)
no / The coupling between natural convection and conduction within rectangular enclosure was investigated numerically. Three separate heat sources were flush mounted on a vertical wall and an isoflux condition was applied at the back of heat sources. The governing equations were solved using control volume formulation. A modified Rayleigh number and a substrate/fluid thermal conductivity ratio were used in the range 10^4 −10^7 and 10−10^3 respectively. The investigation was extended to examine high thermal conductivity ratio values. The results illustrated that, when Rayleigh number increased the dimensionless heat flux and local Nusselt number increased and the boundary layers along hot, cold and horizontal walls were reduced significantly. An opposite behaviour for the thermal spreading in the substrate and the dimensionless temperature, were decreased for higher Rayleigh number. Moreover, the thermal spreading in the substrate increased for higher substrate conductivity, which affected the temperature level. However the effect of the substrate is negligible when the thermal conductivity ratio higher than 1,500. / The full text of book chapters are not available for self deposit under the Publisher's copyright restrictions.
|
12 |
Filtered Rayleigh Scattering with an Application to Force Component DecompositionPowers, Sean William 16 May 2023 (has links)
Doctor of Philosophy / Filtered Rayleigh scattering (FRS) is a laser-based measurement technique that makes use of the scattering of light off particles that are much smaller than the wavelength of light that hits them (i.e., Rayleigh scattering of air molecules). The scattered laser light is altered after encountering particles in predictable ways that can be related to changes in velocity, temperature, and density. However, other sources of scattered light interfere with the pure Rayleigh scattering signal such as Mie and background scattering. Mie scattering is the scattering of light off particles that are much bigger than the wavelength of light that hits them (i.e., dust particles suspended in air). Background scattering is the laser light scattered off physical objects that reflect back into the region of interest. The different types of scattering are accounted for with intensive modeling and iterative fitting schemes where the error between simulated data and experimental data is minimized. This fit allows for velocity, temperature, and density information to be extracted from the measured scattered light. This iterative scheme is then applied to experimental measurements on the ground with mini turbojet engines as well as full-scale turbofan engines. A data grouping technique is derived such that the total measured force using FRS can be divided into individual contributions from different parts of the engine. These developed techniques have laid the foundation for future in-flight measurements of engine forces.
|
13 |
Numerical Investigation Of A Dc Glow Discharge In An Argon Gas: Two-component Plasma ModelKemaneci, Efe H 01 September 2009 (has links) (PDF)
This thesis deals with a one and two dimensional numerical modeling of
a low-pressure DC glow discharge in argon gas. We develop
two-component fluid model which uses the diffusion-drift theory for
the gas discharge plasma and consists of continuity equations for
electrons and ions, as well as Poisson equation for electric field.
Numerical method is based on the control volume technique.
Calculations are carried out in MATLAB environment. Computed results
are compared with the classic theory of glow discharges and
available experimental data.
|
14 |
Simulation and experiment on laser-heated pedestal growth of yttrium-aluminum-garnet single-crystal fibersChen, Peng-Yi 20 August 2009 (has links)
Recently the computational speed and the functions of the numerical methods are advancing rapidly. It is the future trend that using the computational fluid dynamics (CFD) to perform simulation for making up the experimental deficiency, reducing the risk, improving the quality of the product, and saving the cost of research and development.
A two-dimensional simulation was employed to study the melt/air and melt/solid interface shapes of the miniature molten zone formed in the laser-heated pedestal growth (LHPG) system. Using non-orthogonal body-fitting grid system with control-volume finite difference method, the interface shape can be determined both efficiently and accurately. During stable growth, the dependence of the molten-zone length and shape on the heating CO2 laser is examined in detail under both the maximum and the minimum allowed powers with various growth speeds. The effect of gravity for the miniature molten zone is also simulated, which reveals the possibility for a horizontally oriented LHPG system. Such a horizontal system is good for the growth of long crystal fibers.
After comparing with the shape of the molten zone in terms of the experiment and the analysis of the simulation shown as above. Heat transfer and fluid flow in the LHPG system are analyzed near the deformed interfaces. The global thermal distributions of the crystal fiber, the melt, and the source rod are described by temperature and its axial gradient within length of ~10 mm. As compared with the growth of bulk crystal of several centimeters in dimension, natural convection drops six orders in magnitude due to smaller melt volume; therefore, conduction rather than convection determines the temperature distribution in the molten zone. Moreover, thermocapillary convection rather than mass-transfer convection becomes dominant. The symmetry and mass flow rate of double eddy pattern are significantly influenced by the molten-zone shape due to the diameter reduction and the large surface-tension-temperature coefficient in the order of 10-4~10-3. According to the analysis shown as above, the results could be further extended for the analysis of the concentration profile and study of horizontal growth.
|
15 |
A heterogenous three-dimensional computational model for wood dryingTruscott, Simon January 2004 (has links)
The objective of this PhD research program is to develop an accurate and efficient heterogeneous three-dimensional computational model for simulating the drying of wood at temperatures below the boiling point of water. The complex macroscopic drying equations comprise a coupled and highly nonlinear system of physical laws for liquid and energy conservation. Due to the heterogeneous nature of wood, the physical model parameters strongly depend upon the local pore structure, wood density variation within growth rings and variations in primary and secondary system variables. In order to provide a realistic representation of this behaviour, a set of previously determined parameters derived using sophisticated image analysis methods and homogenisation techniques is embedded within the model. From the literature it is noted that current three-dimensional computational models for wood drying do not take into consideration the heterogeneities of the medium. A significant advance made by the research conducted in this thesis is the development of a three - dimensional computational model that takes into account the heterogeneous board material properties which vary within the transverse plane with respect to the pith position that defines the radial and tangential directions. The development of an accurate and efficient computational model requires the consideration of a number of significant numerical issues, including the virtual board description, an effective mesh design based on triangular prismatic elements, the control volume finite element discretisation process for the cou- pled conservation laws, the derivation of an accurate dux expression based on gradient approximations together with flux limiting, and finally the solution of a large, coupled, nonlinear system using an inexact Newton method with a suitably preconditioned iterative linear solver for computing the Newton correction. This thesis addresses all of these issues for the case of low temperature drying of softwood. Specific case studies are presented that highlight the efficiency of the proposed numerical techniques and illustrate the complex heat and mass transport processes that evolve throughout drying.
|
16 |
An investigation of a finite volume method incorporating radial basis functions for simulating nonlinear transportMoroney, Timothy John January 2006 (has links)
The objective of this PhD research programme is to investigate the effectiveness of a finite volume method incorporating radial basis functions for simulating nonlinear transport processes. The finite volume method is the favoured numerical technique for solving the advection-diffusion equations that arise in transport simulation. The method transforms the original problem into a system of nonlinear, algebraic equations through the process of discretisation. The accuracy of this discretisation determines to a large extent the accuracy of the final solution. A new method of discretisation is presented that employs radial basis functions (rbfs) as a means of local interpolation. When combined with Gaussian quadrature integration methods, the resulting finite volume discretisation leads to accurate numerical solutions without the need for very fine meshes, and the additional overheads they entail. The resulting nonlinear, algebraic system is solved efficiently using a Jacobian-free Newton-Krylov method. By employing the new method as an extension of existing shape function-based approaches, the number of nonlinear iterations required to obtain convergence can be reduced. Furthermore, information obtained from these iterations can be used to increase the efficiency of subsequent rbf-based iterations, as well as to construct an effective parallel reconditioner to further reduce the number of nonlinear iterations required. Results are presented that demonstrate the improved accuracy offered by the new method when applied to several test problems. By successively refining the meshes, it is also possible to demonstrate the increased order of the new method, when compared to a traditional shape function basedmethod. Comparing the resources required for both methods reveals that the new approach can be many times more efficient at producing a solution of a given accuracy.
|
17 |
Simulação numérica de escoamentos de fluidos pelo método de elementos finitos baseado em volumes de controle em malhas não estruturadas /Zachi, Jussara Mallia. January 2006 (has links)
Orientador: João Batista Campos Silva / Banca: Ricardo Alan Verdú Ramos / Banca: Edson Luiz Zaparoli / Resumo: O objetivo principal deste trabalho é a simulação numérica de escoamentos de fluidos incompressíveis pelo método de elementos finitos baseado em volumes de controle (CVFEM) utilizando a metodologia de simulação das grandes escalas. As equações governantes são filtradas para a simulação das variáveis de grandes escalas e as escalas sub-malhas, que aparecem devido ao processo de filtragem, são modeladas por meio do modelo de viscosidade turbulenta de Smagorinsky. O domínio é discretizado em malha não estruturada formada por elementos finitos triangulares de seis nós e as equações são integradas em volumes de controle formados em torno dos nós dos elementos. O presente código numérico foi validado aplicando-o a alguns problemas-testes e os resultados, comparados com os disponíveis na literatura. Os casos testes foram o escoamento em uma cavidade quadrada induzido pelo movimento da parede superior, e escoamento por convecção natural em uma cavidade quadrada. Os resultados obtidos, no presente trabalho, concordaram com os resultados da literatura. / Abstract: The main purpose of this work is the numerical simulation of incompressible fluid flows by a control volume finite element method (CVFEM) using the methodology of large-eddy simulation. The domain is discretized using unstructured mesh of six-noded triangular finite elements and the equations are integrated into control volumes around the nodes of the finite elements. The government equations are filtered for simulation of the large scales variables and the sub-grid scales appearing due to the filtering process are modeled through the eddy viscosity model of Smagorinsky. Two-dimensional benchmark problems are solved to validate the numerical code and the results are presented and compared with available results from the literature. The test cases were the lid-driven cavity flow and natural convection flow inside a square cavity. The obtained results, in the present work, agree with results from the literature. / Mestre
|
18 |
Simulação numérica de escoamentos de fluidos pelo método de elementos finitos baseado em volumes de controle em malhas não estruturadasZachi, Jussara Mallia [UNESP] 18 December 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:39Z (GMT). No. of bitstreams: 0
Previous issue date: 2006-12-18Bitstream added on 2014-06-13T18:48:30Z : No. of bitstreams: 1
zachi_jm_me_ilha.pdf: 1606668 bytes, checksum: df36f4d5d30c079b2b8faf62fd202730 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O objetivo principal deste trabalho é a simulação numérica de escoamentos de fluidos incompressíveis pelo método de elementos finitos baseado em volumes de controle (CVFEM) utilizando a metodologia de simulação das grandes escalas. As equações governantes são filtradas para a simulação das variáveis de grandes escalas e as escalas sub-malhas, que aparecem devido ao processo de filtragem, são modeladas por meio do modelo de viscosidade turbulenta de Smagorinsky. O domínio é discretizado em malha não estruturada formada por elementos finitos triangulares de seis nós e as equações são integradas em volumes de controle formados em torno dos nós dos elementos. O presente código numérico foi validado aplicando-o a alguns problemas-testes e os resultados, comparados com os disponíveis na literatura. Os casos testes foram o escoamento em uma cavidade quadrada induzido pelo movimento da parede superior, e escoamento por convecção natural em uma cavidade quadrada. Os resultados obtidos, no presente trabalho, concordaram com os resultados da literatura. / The main purpose of this work is the numerical simulation of incompressible fluid flows by a control volume finite element method (CVFEM) using the methodology of large-eddy simulation. The domain is discretized using unstructured mesh of six-noded triangular finite elements and the equations are integrated into control volumes around the nodes of the finite elements. The government equations are filtered for simulation of the large scales variables and the sub-grid scales appearing due to the filtering process are modeled through the eddy viscosity model of Smagorinsky. Two-dimensional benchmark problems are solved to validate the numerical code and the results are presented and compared with available results from the literature. The test cases were the lid-driven cavity flow and natural convection flow inside a square cavity. The obtained results, in the present work, agree with results from the literature.
|
19 |
Modélisation du couplage hydromécanique lors de la mise en oeuvre des composites par infusion / Modelling of hydromechanical coupling during composite manufacturing by the infusion processLoudad, Raounak 19 January 2016 (has links)
L’objectif de ce travail est de contribuer à la modélisation du couplage hydromécanique, existant entre la déformation de la préforme fibreuse et l’écoulement de la résine, et par la suite à la simulation des procédés d’infusion. La méthode de résolution numérique déployée dans ce cadre est de type éléments finis avec volumes de contrôles (CVFEM) formulée en 2D½. Une nouvelle approche de modélisation de procédé d’infusion est proposée. Dans cette méthode, nous avons introduit des éléments 1D qui traduisent l’écoulement transverse. Cette approche permet de surmonter la difficulté numérique relative à l’usage des éléments finis volumiques pour un calcul 3D, notamment pour simuler la mise en œuvre des pièces industrielles de grandes dimensions. Le modèle fait appel à des lois de comportements caractérisées expérimentalement et qui permettent de tenir compte de l’évolution de la perméabilité et la compressibilité du milieu fibreux au cours de l’infusion. Diverses confrontations entre le modèle numérique proposé, des méthodes analytiques et expérimentales ont été menées. Une application du modèle dans la simulation de l’infusion d’un démonstrateur industriel de géométrie complexe est également réalisée. Les résultats obtenus sont très encourageants et révèlent l’efficacité de l’outil développé dans la simulation du procédé d’infusion / The aim of this work is to model the hydromechanical coupling that exists between the preform compressibility and the resin flow in order to simulate the infusion processes. The numerical method used in this study is based on the Control Volume Finite Elements Method (CVFEM) in 2D½. A new modelling approach of the infusion process is proposed. In this method, we introduced 1D elements to include through-the-thickness flow. This approach allows to reduce the computational time in comparison with full 3D modelling, especially in the simulation of industrial part infusion with large dimensions. The developed model is alimented by behavior laws that we characterized experimentally. These laws allow to take into account the evolution of the permeability and the compressibility of the fibrous medium during the infusion. We validated our model by comparing its results with analytical and experimental data. Additionally, an application of this simulation approach has been carried out to simulate the infusion of an industrial demonstrator with complex geometry. These comparisons show a good agreement between numerical and experimental results and reveal the efficiency of the developed tool in the infusion process simulation.
|
20 |
Small Scale Mass Flow Plug CalibrationSasson, Jonathan 09 February 2015 (has links)
No description available.
|
Page generated in 0.0412 seconds