• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vers la conception moléculaire de catalyseurs d'hydrotraitement préparés à partir de précurseurs métallo-organiques / Towards the molecular design of hydrotreating catalysts prepared with metallo-organic precursors

Alphazan, Thibault 25 October 2013 (has links)
L'enjeu de cette thèse réside dans la compréhension et l'amélioration de la sulfuration de catalyseurs à base de W. Elle a pour objectif la rationalisation des différentes étapes de préparation de catalyseurs d’hydrotraitement de type NiWS depuis la préparation jusqu'au test catalytique par une approche moléculaire (appelée «chimie de surface contrôlée» ou CSC), ce qui permet de proposer de nouvelles voies pour lever le verrou majeur, lié à la mauvaise sulfuration du W. Au cœur de cette approche se situe l'utilisation d'une méthode de préparation originale, ayant recours à des composés moléculaires métallo-organiques bien-définis comme précurseurs de la phase sulfurée WS2, combinée à une analyse poussée par spectroscopies multiples (IR, RMN, XPS) et chimie computationnelle.La famille des alcoxydes de tungstène a été sélectionnée ; les précurseurs mono ou di-nucléaires tels que W(OEt)6, [W(=O)(OEt)4]2 ou [W(OEt)5]2 ont été greffés sur silice-alumine partiellement deshydroxylée, et leur conversion en phase sulfure a montré que le type de précurseurs moléculaires influençaient peu les propriétés des catalyseurs non promus (WS2/ASA), en termes de taux de sulfuration (déterminé par XPS) ou d’activité catalytique, en hydrogénation du toluène en présence d’aniline. Le composé [W(OEt)5]2 a ensuite été sélectionné pour approfondir l’étude des catalyseurs préparés par CSC.L'approche visant à améliorer la compréhension des différentes espèces de surface formées a été réalisée par l'étude des matériaux avant et après sulfuration. L'augmentation de la quantité de W déposé sur les matériaux CSC a permis de révéler la formation de (1) une couche d’espèces greffées sur la surface de silice-alumine, puis (2) de couches successives, formées d'espèces plus mobiles. L'étude portant sur la sulfuration de ces matériaux en fonction de leur teneur en W, et de la température de sulfuration, a permis de les comparer aux catalyseurs sulfurés dits «conventionnels». Cette étude approfondie a mis en évidence une amélioration de la sulfuration du W pour les matériaux CSC aux températures habituellement utilisées (350°C). La vitesse intrinsèque d’hydrogénation des catalyseurs CSC, jusqu’à deux fois supérieure à celle des catalyseurs conventionnels, a en partie été expliquée par un meilleur taux de sulfuration, et par la morphologie 2D des feuillets WS2 (STEM-HAADF), de forme triangulaire tronquée, dans le cas d’un catalyseur conventionnel.Finalement, ayant démontré que l’emploi d’espèces moléculaires mono et binucléaires permettait d’améliorer les catalyseurs non promus par rapport à l’approche conventionnelle utilisant des clusters polyanioniques, les catalyseurs promus de type NiW/ASA ont été étudiés. Différents précurseurs ont été utilisés (par exemple Ni(acac)2) ainsi que différentes méthodes de dépôt (dépôt du nickel sur un matériau sulfuré, ou non) et quantités de nickel. Ces travaux ont permis d’estimer l’influence de ces paramètres sur la sulfurabilité du W et du Ni, ainsi que sur l’activité catalytique des catalyseurs, et montrer que l’emploi d'une approche moléculaire dans la préparation des phases NiWS supportées permet d’améliorer la promotion des feuillets sulfures par le nickel, mais aussi d'accéder à des catalyseurs pouvant avoir des vitesses intrinsèques d’hydrogénation quatre fois supérieures celles de catalyseurs conventionnelles de référence. Ces résultats catalytiques sont très probablement liés à une balance optimisée entre «nature» et «quantité» de sites actifs mixtes Ni-W. Cela démontre l’intérêt d’une approche moléculaire pour la préparation de catalyseurs d'hydrotraitement plus performants. / The aim of this thesis is to understand and improve the sulphidation of W-based hydrotreating catalysts by understanding and characterising each step of their preparation, from the synthesis to catalytic tests, via a controlled surface chemistry approach (or "CSC", also referred as surface organometallic chemistry, "SOMC", in the literature). This molecular approach opens new avenues for the improvement of W sulphidation, which is one strong limitation for using this metal in hydrotreatment. The core of this study is based on the use of well-defined metallo-organic precursors as precursors of the tungsten sulphide phase, each step of materials preparation being characterised by multiple spectroscopy techniques (IR, NMR, XPS) combined with ab initio molecular modelling.Mono or dinuclear tungsten alkoxides such as [W(OEt)5]2, W(OEt)6 or [W(=O)(OEt)4]2 were grafted on partially dehydroxylated amorphous silica-alumina. Their conversion into sulphide materials reveals that the precursor does not influence significantly the amount of WS2 phase formed (level of sulphidation observed by XPS) as well as catalytic properties in toluene hydrogenation in the presence of aniline. Only [W(OEt)5]2 was used in the following experiments.So as to better understand the genesis of the sulphide phase, CSC materials were characterised before and after sulphidation. Before sulphidation, the use of increasing amounts of W precursor reveals the formation of (1) first, a layer of tungsten surface species grafted on the surface, and (2) second, layers of more mobile species, more loosely bonded to the grafted species. Then, these CSC materials were sulphided into WS2 catalysts (with different W-loading, and different sulphidation temperatures) and were compared to conventionally prepared samples. The results reveal an improvement of tungsten sulphidation for CSC samples already at ambient sulphidation temperature and also at more usual sulphidation temperatures (350°C). Catalytic activities up to 2 times higher than conventional references were also obtained. They are explained in part by the better level of sulphidation of CSC samples and by a different 2D morphology of WS2 crystallites (STEM-HAADF), observed to be hexagonal-like for CSC samples while conventional ones have truncated triangle-like shapes.Then, as non-promoted CSC samples were more active than their conventional counterparts, nickel promoted catalysts (NiWS) were prepared, with the use of different Ni precursors (such as Ni(acac)2), different preparation methods and Ni amounts. This study gives insights into the sulphidation of W and Ni, and reveals that samples prepared via a molecular approach (CSC) can exhibit intrinsic hydrogenation rates up to four times higher than reference catalysts. These results are explained by an optimal balance between the nature of active Ni-W mixed sites and their amount. These interesting results, obtained for non-promoted and Ni-promoted catalysts, show that the use of a molecular approach is suitable to design highly active hydrotreating catalysts.
2

Assemblages et études de la différenciation cellulaire des cellules souches sur des surfaces de géométrie et chimie contrôlées / Assemblies and studies of the cellular differentiation of stem cells on controlled geometry and chemistry surfaces

Hamieh, Batoul 06 December 2018 (has links)
La cellule répond aux contraintes physiques exercées par son environnement par un ensemble de mécanismes regroupés sous le terme de mécanotransduction. Ces processus font appel aux molécules impliquées dans l’adhésion cellulaire, au cytosquelette et au noyau. Ces contraintes environnementales, qu’elles soient liées à la rigidité du support, à sa topographie ou à la nature de sa chimie de surface, vont moduler la morphologie cellulaire et impacter le comportement de la cellule. Afin d’étudier cette influence du support, nous avons ensemencé des cellules souches mésenchymateuses (CSMs) de moelle osseuse (MO) issues d’une culture primaire sur des surfaces de mica vierges ou fonctionnalisées de façon homogène avec des molécules naturelles (la fibronectine FN et le peptide RGD cyclique) ou avec des multicouches de polyélectrolytes PEM (cinq cycles de Chitosan/PAA ou de Chitosan/PSS). Nous avons ensuite étudié la morphologie, la prolifération et la différenciation de ces cellules après 12 jours de culture. Il en résulte que les CSMs de MO adhèrent sur toutes les surfaces, traitées ou non, et bien que leur étalement soit moindre sur les surfaces vierges, elles adoptent une morphologie de type fibroblastique similaire à leur phénotype physiologique. Leur pourcentage de confluence varie significativement en fonction du traitement de surface utilisé. En effet la confluence maximale a été observée pour les surfaces greffées avec la FN (93.25 ± 2.75 %) alors que les surfaces traitées avec les PEM présentent des pourcentages de confluence bien plus faibles (61.00 ± 4.08 % pour le couple chitosan/PAA et 54.75 ± 1.75 % pour le couple Chitosan/PSS), s’expliquant principalement par une latence cellulaire en début de culture. Enfin, les cellules cultivées sur nos surfaces ne réagissent à aucune des trois colorations Oil Red O, Alcian Blue ou Alizarin Red S, suggérant une absence de différenciation dans les voies adipogénique, chondrogénique ou ostéogénique induite par ces surfaces. Ainsi, le contrôle de la chimie du support ne permet pas à lui seul un contrôle de la différenciation cellulaire. Cette étude ouvre la voie à l’étape suivante au cours de laquelle l’influence des supports à chimie et géométrie contrôlées. De même, la souche E.coli (bactérie pathogène) répond aux contraintes physiques et chimiques qui lui ont été imposées. Ces contraintes qu’elles soient liées à la topographie ou la nature de la chimie de surface font appel à des molécules naturelles impliquées dans le comportement des bactéries et leur morphologie en particulier sur leur taille. Pour étudier cet impact, nous avons mis en contact la souche E.coli E2146 avec des surfaces de mica vierges ou traitées de façon homogène ou patternée avec des molécules naturelles (la FN et le peptide RGD cyclique). Ensuite, nous avons étudié le taux de recouvrement et la taille des bactéries. Il en résulte que les bactéries adhèrent sur l’ensemble des surfaces bien que l’adhésion soit moindre sur les surfaces de mica vierges. Leur taux de recouvrement varie significativement pour une surface donnée. En effet, le taux de recouvrement et la taille maximaux sont observés sur des surfaces patternées greffées avec la FN, ce qui prouve leur efficacité et l’impact qu’elles ont sur le comportement de E.coli. Nous avons donc démontré dans ce travail de thèse l’influence des propriétés de surfaces sur la croissance de cellules vivantes telles que les cellules souches ou les bactéries. / The cell responds to the physical constraints exerted by its environment by a set of mechanisms grouped under the term of mechanotransduction. These processes involve the molecules involved in cell adhesion, the cytoskeleton and the nucleus. These environmental constraints, whether related to the rigidity of the support, to its topography or to the nature of its surface chemistry, will modulate the cellular morphology and impact the behavior of the cell. In order to study this influence of the support, we have seeded bone marrow mesenchymal stem cells from a primary culture on virgin mica surfaces or functionalized homogeneously with natural molecules (fibronectin and the cyclic RGD peptide) or with polyelectrolyte multilayers (five cycles of Chitosan/PAA or Chitosan/PSS). We then studied the morphology, proliferation and differentiation of these cells after 12 days of culture. As a result, bone marrow mesenchymal stem cells adhere to all surfaces, whether treated or not, and although they are less spread on virgin surfaces, they adopt a fibroblastic type morphology similar to their physiological phenotype. Their percentage of confluence varies significantly depending on the surface treatment used. Indeed the maximum confluence was observed for the surfaces grafted with fibronectin (93.25 ± 2.75%) whereas the surfaces treated with the polyelectrolyte multilayers have much lower confluence percentages (61.00 ± 4.08% for the chitosan/PAA couple) and 54.75 ± 1.75% for the Chitosan/PSS couple), mainly due to cell latency at the beginning of culture. Finally, cells cultured on our surfaces do not respond to any of the three Oil Red O, Alcian Blue or Alizarin Red S stains, suggesting a lack of differentiation in the adipogenic, chondrogenic or osteogenic pathways induced by these surfaces. Thus, the control of the support chemistry alone does not allow control of cell differentiation. This study paves the way for the next step in which the influence of controlled chemistry and geometry media will be studied. Similarly, the E. coli strain (pathogenic bacterium) responds to the physical and chemical constraints imposed on it. These constraints, whether related to the topography or the nature of surface chemistry, involve natural molecules involved in the behavior of bacteria and their morphology, in particular their size. To study this impact, we contacted E.coli strain E2146 with virgin mica surfaces or treated homogeneously or patterned with natural molecules (fibronectin and cyclic RGD peptide). Then we studied the recovery rate and the size of the bacteria. As a result, the bacteria adhere to all surfaces although adhesion is less on virgin mica surfaces. Their recovery rate varies significantly for a given area. Indeed, the recovery rate and the maximum size are observed on patterned surfaces grafted with fibronectin which proves their effectiveness and the impact they have on the behavior of E. coli. We have therefore demonstrated in this thesis the influence of surface properties on the growth of living cells such as stem cells or bacteria.

Page generated in 0.0574 seconds