• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caracterização da microestrutura dendritica na solidificação vertical descendente de ligas AL-CU / Characterization of dendritic array during downward transient directionally solidified AL-CU alloys

Rosa, Daniel Monteiro 12 July 2004 (has links)
Orientador: Amauri Garcia / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-04T03:07:36Z (GMT). No. of bitstreams: 1 Rosa_DanielMonteiro_M.pdf: 7995773 bytes, checksum: 8859b8e785820d46c1b77212d7acaa31 (MD5) Previous issue date: 2004 / Resumo: Os espaçamentos dendríticos são parâmetros microestruturais importantes, resultantes do processo de solidificação. Eles afetam os perfis de microssegregação e governam a formação de segundas fases na região interdendrítica, influenciando, conseqüentemente, as propriedades mecânicas do material. Poucos estudos têm analisado os efeitos da convecção no líquido interdendrítico, bem como a influência da direção de crescimento em relação à gravidade nos espaçamentos dendríticos. Neste trabalho, foi utilizado um dispositivo de solidificação unidirecional vertical descendente, constituído por uma lingoteira de aço inox com diâmetro interno de 56mm, 150mm de comprimento e 10mm de espessura. Na parte superior, foi posicionada uma câmara de refrigeração a água do mesmo material do molde e com espessura útil de 3,0 mm. Após a obtenção dos lingotes e registrados os respectivos perfis térmicos experimentais, foram determinadas as variáveis térmicas de solidificação: coeficiente de transferência de calor metal/molde, velocidades de deslocamento da isoterma liquidus, gradientes térmicos, tempos locais de solidificação e taxas de resfriamento para a solidificação unidirecional descendente de ligas hipoeutéticas do sistema Al-Cu (Al3%Cu, Al5%Cu e Al8%Cu). Estas variáveis térmicas foram confrontadas com as previsões teóricas de um modelo numérico de solidificação e em seguida correlacionadas com os parâmetros microestruturais experimentais (espaçamentos dendríticos primários e secundários). Dessa forma, foram determinadas equações experimentais de crescimento para a solidificação descendente. As previsões teóricas de modelos de crescimento dendrítico representativos da literatura foram conftontadas com os resultados experimentais. Realizou-se também uma análise comparativa destes espaçamentos dendríticos com resultados obtidos para solidificação vertical ascendente de ligas de mesma composição / Abstract: The dendritic spacings are important microstructural parameters, involved in solidification processes. They can affect not only microsegregation profiles but also the formation of secondary phases within interdendritic regions, which influences mechanical properties of cast structures. A small number of studies have been carried out in order to analyze the effects of melt convection within the interdendritic region or to verify the influence of growth direction on dendritic arm spacings. In this work, an experimental set-up of downward solidification with a stainless steel mold, having an internal diameter of 56mm, height 150mm and wall thickness of 10mm, was used. The upper part of the split mold was closed with a water-cooling chamber made of stainless steel, with a wall thickness of 3 mm. Besides, a combined theoretical and experimental approach is developed to quantitatively determine solidification thermal variables such as: transient metallmold heat transfer coefficient, tip growth rate, thermal gradient, tip cooling rate and local solidification time during downward transient solidification of hypoeutectic AI-Cu alloys solidified downwards (Al-3wt%Cu, Al-5wt%Cu and Al-8wt%Cu). These solidification thermal variables are correlated with dendritic spacings (primary and secondary spacings), which have been measured along cross and longitudinal sections of ingots solidified under downward transient heat flow conditions. Predictive theoretical models for dendritic spacings have been compared with experimental observations. A comparison between upward and downward unsteady-state results for dendritic spacings has also been conducted. / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
2

Numerical Investigation Of Natural Convection From Plate Finned Heat Sinks

Mehrtash, Mehdi 01 September 2011 (has links) (PDF)
Finned heat sink use for electronics cooling via natural convection is numerically investigated. An experimental study from the literature that is for vertical surfaces is taken as the base case and the experimental setup is numerically modeled using commercial CFD software. The flow and temperature fields are resolved. A scale analysis is applied to produce an order-of-magnitude estimate for maximum convection heat transfer corresponding to the optimum fin spacing. By showing a good agreement of the results with the experimental data, the model is verified. Then the model is used for heat transfer from inclined surfaces. After a large number of simulations for various forward and backward angles between 0-90 degrees, the dependence of heat transfer to the angle and Rayleigh number is investigated. It is observed that the contributions of radiation and natural convection changes with the angle considerably. Results are also verified by comparing them with experimental results available in literature.
3

Teplotní analýza synchronního stroje / Thermal analysis of synchronous machine

Bartoň, Petr January 2013 (has links)
The master’s thesis deals with analysis of warming and cooling of synchronous machine. The warming is caused by the machine’s losses resulting from the conversion of electrical energy into mechanical energy. There then can be achieved high values of temperature on the machine, which can lead to destruction of the machine. The transient thermal analysis, working on the finite element program Ansys Workbench, is used for thermal analysis. As an appropriate instrument, which serves for flow calculation, a module CFX in the program Ansys Workbench may be used. In the practical part the model for unhampered alternator with current in the field winding only was measured and after that, the measured values were compared with the results of transient thermal analysis. Speed and progress of air flow through machine were analyzed with CFX module.
4

Entwicklung und Demonstration eines neuartigen Prozesses (Konvektionsgenerator) zur Stromerzeugung aus niederenthalper Wärme: Abschlussbericht

Baumung, Tilo, Buchheim, Guntram 20 March 2009 (has links)
Aus Thermalwässern mit Temperaturen nur wenig über der Kühltemperatur ist die Stromgewinnung bisher nicht wirtschaftlich. Ein neuartiger Konvektionsgenerator soll das ändern. Er lässt sich auch für insustrielle Rest- oder Abwärme einsetzen.
5

Experimental investigation of heat exchange between thermal mass and room environments

Hudjetz, Stefan January 2012 (has links)
The different technologies of passive cooling concepts have to rely on a good thermal coupling between a building's thermal mass and indoor air. In many cases, the ceiling is the only surface remaining for a good coupling. Further research is necessary to investigate discrepancies between existing correlations. Therefore, the overall aim of the work described in this thesis is the investigation of heat transfer at a heated ceiling in an experimental chamber. Acoustic baffles obstruct the surface of the ceiling and impede heat transfer. However, there is nearly no published data about the effect of such baffles on heat transfer. Available results from simulations should be verified with an experimental investigation. Consequently, one of the primary aims of this work was to experimentally determine the influence of such acoustic baffles. A suitable experimental chamber has been built at Biberach University of Applied Sciences. The thesis describes the experimental chamber, the experimental programme as well as results from five different test series. With a value of ±0.1Wm⁻²K⁻¹ for larger temperature differences, uncertainty in resulting convective heat transfer coefficients for natural convection is comparable to that of results from an existing recent experimental work often recommended for use. Additionally, total heat transfer (by convection and radiation) results are presented. Results are given for natural, forced and mixed convection conditions at an unobstructed heated ceiling. Furthermore, results for acoustic baffles in both an unventilated and a ventilated chamber are shown. Natural convection results show a very good agreement with existing correlations. Under mixed convection conditions, convective heat transfer at an unobstructed ceiling decreases to the limiting case described by natural convection. Installation of acoustic baffles leads to a reduction in total heat transfer (convection and radiation) between 20% and 30% when compared to the case of an unobstructed ceiling.
6

Dropwise condensation in the presence of non-condensable gas

Zheng, Shaofei 16 January 2020 (has links)
Dropwise condensation, which collects the condensate liquid in the form of droplets, has attracted a growing interest due to much higher heat transfer coefficient. One important and challenging issue in dropwise condensation is the presence of non-condensable gas (NCG) which drastically reduces its heat transfer performance. Concerning the mechanism understanding, this thesis is aiming to investigate dropwise condensation in case of NCG by combing different methods. Firstly, convective dropwise condensation out of moist air is experimentally investigated under controllable conditions. In modeling, some crucial aspects are reasonably captured: the coupled heat and mass transfer during droplet growth by a multi-scale droplet growth model; the inter-droplet interaction defined by a distributed point sink method; the enhancement of the convective mass transfer using the droplet Sherwood number. Furthermore, a multi-component multi-phase thermal pseudopotential-based LB model is developed to advance the directly numerical simulation of dropwise condensation.

Page generated in 0.0756 seconds