• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elaboration de solveurs volumes finis 2D/3D pour résoudre le problème de l'élasticité linéaire / Computational 2D/3D finite volume solvers applied to linear elasticity

Martin, Benjamin 19 September 2012 (has links)
Les méthodes classiques de résolution des équations de l'élasticité linéaire sont les méthodes éléments finis. Ces méthodes produisent de très bons résultats et sont très largement analysées mathématiquement pour l'étude des déformations solides. Pour des problèmes de couplage solide/fluide, pour des situations réalistes en présence de discontinuités (modélisation des fronts de gel dans les sols humides), ou bien encore pour des domaines de calcul mieux adaptés aux maillages non conformes, il parait intéressant de disposer de solveurs Volumes Finis. Les méthodes Volumes Finis sont très largement utilisées en mécanique des fluides. Appliquées aux problèmes de convection, elles sont bien adaptées à la capture de solutions présentant des discontinuités et ne nécessitent pas de maillages conformes. De plus, elles présentent l'avantage de conserver au niveau discret les flux à travers les interfaces du maillage. C'est pourquoi sont développées et testées, dans cette thèse, plusieurs méthodes de volumes finis, qui permettent de traiter le problème de l'élasticité. On a, dans un premier temps, mis en œuvre la méthode LSGR (Least Squares Gradient Reconstruction), qui reconstruit des gradients par volumes à partir d'une formule de moindres carrés pondérés sur les volumes voisins. Elle est testée pour des maillages tétraédriques non structurés, et montre un ordre 1 de convergence. La méthode des Volumes Finis mixtes est ensuite présentée, basée sur la conservation d'un flux "pénalisé" à travers les interfaces. Cette pénalisation impose une contrainte sur le type de maillage utilisé, et des tests sont réalisés en 2d avec des maillages structurés et non structurés de quadrangles. On étend ensuite la méthode des Volumes Finis diamants à l'élasticité. Cette méthode détermine un gradient discret sur des sous volumes associés aux interfaces à partir de l'interpolation de la solution aux sommets du maillage. La convergence théorique est prouvée sous réserve de vérifier une condition de coercivité. Les résultats numériques, en 2d pour des maillages non structurés, conduisent à un ordre de convergence meilleur que celui prouvé. Enfin, la méthode DDFV (Discrete Duality Finite Volume), qui est une extension de la méthode Diamant, est présentée. Elle est basée sur une correspondance entre plusieurs maillages afin d'y construire des opérateurs discrets en "dualité discrète". On montre que la méthode est convergente d'ordre 1. Les illustrations numériques, réalisées en 2d et en 3d pour des maillages non structurés, montrent une convergence d'ordre 2, ce qui est fréquemment observé pour cette méthode. / Finite element methods are conventionally used for solving linear elasticity equations. These methods produce very good results and are widely analyzed from a mathematical point of view to study solid deformations. It seems interesting to have Finite Volume solvers for coupled solid/fluid problems, realistic situations in presence of discontinuities (freezing fronts modeling in wet soils), or even to compute fields better suited to non-conforming meshes. Finite Volume methods are widely used in fluid mechanics. Applied to convection problems, they are well suited to compute solutions with discontinuities and do not require mesh conformity. Moreover, they have the advantage of preserving discrete flows across the interfaces of the mesh. Therefore, we develop and test in this thesis several finite volume methods for solving the elasticity problem. First of all, we implement the LSGR method (Least Squares Gradient Reconstruction), which reconstructs gradients by volume from a weighted least squares formula on neighboring volumes. This method has been successfully tested for unstructured tetrahedral meshes, and shows a first-order convergence rate. Then, we present the Mixed Finite Volume method, based on the conservation of a "penalized" flow across the interfaces. The penalty term imposes a constraint on the type of meshes, and numerical tests are performed in 2D with structured and unstructured quadrangles. Afterwards, we extend the diamond-cell Finite Volume method to the elasticity. This method computes a discrete gradient on sub-volumes related to the interfaces from the interpolation of the solution at vertices. The theoretical convergence is proved under a coercivity condition. The numerical results, achieved in 2d for unstructured meshes, give a second-order convergence rate. Finally, we present the DDFV method (Discrete Duality Finite Volume), which is an extension of the precedent one. This method is based on a correspondence between several meshes in order to construct discrete operators on "discrete duality". We show that the DDFV scheme is a first-order convergent method. The 2d and 3d numerical tests on unstructured meshes show a second-order convergence rate, which is a classical result for this method.
2

Efficient Variable Mesh Techniques to solve Interior Layer Problems

Mbayi, Charles K. January 2020 (has links)
Philosophiae Doctor - PhD / Singularly perturbed problems have been studied extensively over the past few years from different perspectives. The recent research has focussed on the problems whose solutions possess interior layers. These interior layers appear in the interior of the domain, location of which is difficult to determine a-priori and hence making it difficult to investigate these problems analytically. This explains the need for approximation methods to gain some insight into the behaviour of the solution of such problems. Keeping this in mind, in this thesis we would like to explore a special class of numerical methods, namely, fitted finite difference methods to determine reliable solutions. As far as the fitted finite difference methods are concerned, they are grouped into two categories: fitted mesh finite difference methods (FMFDMs) and the fitted operator finite difference methods (FOFDMs). The aim of this thesis is to focus on the former. To this end, we note that FMFDMs have extensively been used for singularly perturbed two-point boundary value problems (TPBVPs) whose solutions possess boundary layers. However, they are not fully explored for problems whose solutions have interior layers. Hence, in this thesis, we intend firstly to design robust FMFDMs for singularly perturbed TPBVPs whose solutions possess interior layers and to improve accuracy of these approximation methods via methods like Richardson extrapolation. Then we extend these two ideas to solve such singularly perturbed TPBVPs with variable diffusion coefficients. The overall approach is further extended to parabolic singularly perturbed problems having constant as well as variable diffusion coefficients. / 2023-08-31
3

Fitted numerical methods to solve differential models describing unsteady magneto-hydrodynamic flow

Buzuzi, George January 2011 (has links)
Philosophiae Doctor - PhD / In this thesis, we consider some nonlinear differential models that govern unsteady magneto-hydrodynamic convective flow and mass transfer of viscous, incompressible,electrically conducting fluid past a porous plate with/without heat sources. The study focusses on the effect of a combination of a number of physical parameters (e.g., chemical reaction, suction, radiation, soret effect,thermophoresis and radiation absorption) which play vital role in these models.Non dimensionalization of these models gives us sets of differential equations. Reliable solutions of such differential equations can-not be obtained by standard numerical techniques. We therefore resorted to the use of the singular perturbation approaches. To proceed, each of these model problems is discretized in time by using a suitable time-stepping method and then by using a fitted operator finite difference method in spatial direction. The combined methods are then analyzed for stability and convergence. Aiming to study the robustness of the proposed numerical schemes with respect to change in the values of the key parame- ters, we present extensive numerical simulations for each of these models. Finally, we confirm theoretical results through a set of specificc numerical experiments.
4

Fitted numerical methods to solve di erential models describing unsteady magneto-hydrodynamic ow

Buzuzi, George January 2013 (has links)
Philosophiae Doctor - PhD / In this thesis, we consider some nonlinear di erential models that govern unsteady magneto-hydrodynamic convective ow and mass transfer of viscous, incompressible, electrically conducting uid past a porous plate with/without heat sources. The study focusses on the e ect of a combination of a number of physical parameters (e.g., chem- ical reaction, suction, radiation, soret e ect, thermophoresis and radiation absorption) which play vital role in these models. Non-dimensionalization of these models gives us sets of di erential equations. Reliable solutions of such di erential equations can- not be obtained by standard numerical techniques. We therefore resorted to the use of the singular perturbation approaches. To proceed, each of these model problems is discretized in time by using a suitable time-stepping method and then by using a tted operator nite di erence method in spatial direction. The combined methods are then analyzed for stability and convergence. Aiming to study the robustness of the proposed numerical schemes with respect to change in the values of the key parame-ters, we present extensive numerical simulations for each of these models. Finally, we con rm theoretical results through a set of speci c numerical experiments.
5

Vývoj reálné a nominální konvergence v České a Slovenské republice a vstup ČR do EMU / Development of nominal and real convergence in Czech and Slovak Republic and entry of the Czech Republic into the EMU

Gajoš, Ondřej January 2012 (has links)
The aim of this thesis is to define nominal and real convergence within the area of the European Union and to assess its development on the example of the Czech and Slovak Republics. This dissertation is divided into three integrated sections. The theoretical part analyses basic economic concepts related to the issue of convergence and stability of joint economic units. The topics covered include the Maastricht criteria, their relevance, currentness and possible conflict between nominal and real convergence with the accession of new countries, then the theory of optimum currency area (OCA), theory of endogeneity and exogeneity and the linkage on fiscal policy and fiscal discipline in the environment of the European Union and the eurozone. Special attention is focused on the development of fiscal policy following from the establishment of the Stability and Growth Pact, including its reforms and recent changes in the form of the Euro Plus Pact and the Fiscal Convention. To satisfy the need for quantitative evaluation of given hypotheses, the second (empirical and analytical) part offers two self-constructed indices - the index of real convergence and fiscal discipline index. Based on these indices, relationship between the performance criteria of nominal and the real economy is monitored in the evaluated cohort. The last part of this work is dedicated to synthesis and application of findings from the previous sections upon which conclusions and recommendations for possible entry of the Czech Republic into the euro area are made.

Page generated in 0.0858 seconds