• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • Tagged with
  • 12
  • 12
  • 12
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Interacting stochastic systems with individual and collective reinforcement / Systèmes stochastiques en interaction avec des renforcements individuels et collectifs

Mirebrahimi, Seyedmeghdad 05 September 2019 (has links)
L'urne de Polya est l'exemple typique de processus stochastique avec renforcement. La limite presque sûre (p.s.) en temps existe, est aléatoire et non dégénérée. L'urne de Friedman est une généralisation naturelle dont la limite (proportion asymptotique en temps) n'est plus aléatoire. De nombreux modèles aléatoires sont fondés sur des processus de renforcement comme pour la conception d'essais cliniques au design adaptatif, en économie, ou pour des algorithmes stochastiques à des fins d'optimisation ou d'estimation non paramétrique. Dans ce mémoire, inspirés par de nombreux articles récents, nous introduisons une nouvelle famille de systèmes (finis) de processus de renforcement où l'interaction se traduit par un phénomène de renforcement collectif additif, de type champ moyen. Les deux taux de renforcement (l'un spécifique à chaque composante, l'autre collectif et commun à toutes les composantes) sont possiblement différents. Nous prouvons deux types de résultats mathématiques. Différents régimes de paramètres doivent être considérés : type de la règle (brièvement, Polya/Friedman), taux du renforcement. Nous prouvons l'existence d'une limite p.s. coommune à toutes les composantes du système (synchronisation). La nature de la limite (aléatoire/déterministe) est étudiée en fonction du régime de paramètres. Nous étudions également les fluctuations en prouvant des théorèmes centraux de la limite. Les changements d'échelle varient en fonction du régime considéré. Différentes vitesses de convergence sont ainsi établies. / The Polya urn is the paradigmatic example of a reinforced stochastic process. It leads to a random (non degenerated) almost sure (a.s.) time-limit.The Friedman urn is a natural generalization whose a.s. time-limit is not random anymore. Many stochastic models for applications are based on reinforced processes, like urns with their use in adaptive design for clinical trials or economy, stochastic algorithms with their use in non parametric estimation or optimisation. In this work, in the stream of previous recent works, we introduce a new family of (finite) systems of reinforced stochastic processes, interacting through an additional collective reinforcement of mean field type. The two reinforcement rules strengths (one componentwise, one collective) are tuned through (possibly) different rates. In the case the reinforcement rates are like 1/n, these reinforcements are of Polya or Friedman type as in urn contexts and may thus lead to limits which may be random or not. We state two kind of mathematical results. Different parameter regimes needs to be considered: type of reinforcement rule (Polya/Friedman), strength of the reinforcement. We study the time-asymptotics and prove that a.s. convergence always holds. Moreover all the components share the same time-limit (synchronization). The nature of the limit (random/deterministic) according to the parameters' regime is considered. We then study fluctuations by proving central limit theorems. Scaling coefficients vary according to the regime considered. This gives insights into the different rates of convergence.
12

Émergence du bruit dans les systèmes ouverts classiques et quantiques / Appearance of noise in classical and quantum open systems

Deschamps, Julien 22 March 2013 (has links)
Nous nous intéressons dans cette thèse à certains modèles mathématiques permettant une description de systèmes ouverts classiques et quantiques. Dans l'étude de ces systèmes en interaction avec un environnement, nous montrons que la dynamique induite par l'environnement sur le système donne lieu à l'apparition de bruits. Dans une première partie de la thèse, dédiée aux systèmes classiques, le modèle décrit est le schéma d'interactions répétées. Etant à la fois hamiltonien et markovien, ce modèle en temps discret permet d'implémenter facilement la dissipation dans des systèmes physiques. Nous expliquons comment le mettre en place pour des systèmes physiques avant d'en étudier la limite en temps continu. Nous montrons la convergence Lp et presque sûre de l'évolution de certains systèmes vers la solution d'une équation différentielle stochastique, à travers l'étude de la limite de la perturbation d'un schéma d'Euler stochastique. Dans une seconde partie de la thèse sur les systèmes quantiques, nous nous intéressons dans un premier temps aux actions d'environnements quantiques sur des systèmes quantiques aboutissant à des bruits classiques. A cette fin, nous introduisons certains opérateurs unitaires appelés « classiques », que nous caractérisons à l'aide de variables aléatoires dites obtuses. Nous mettons en valeur comment ces variables classiques apparaissent naturellement dans ce cadre quantique à travers des 3-tenseurs possédant des symétries particulières. Nous prouvons notamment que ces 3-tenseurs sont exactement ceux diagonalisables dans une base orthonormée. Dans un second temps, nous étudions la limite en temps continu d'une variante des interactions répétées quantiques dans le cas particulier d'un système biparti, c'est-à-dire composé de deux systèmes isolés sans interaction entre eux. Nous montrons qu'à la limite du temps continu, une interaction entre ces sous-systèmes apparaît explicitement sous forme d'un hamiltonien d'interaction; cette interaction résulte de l'action de l'environnement et de l'intrication qu'il crée / This dissertation is dedicated to some mathematical models describing classical and quantum open systems. In the study of these systems interacting with an environment, we particularly show that the dynamics induced by the environment leads to the appearance of noises. In a first part of this thesis, devoted to classical open systems, the repeated interaction scheme is developed. This discrete-time model, being Hamiltonian and Markovian at the same time, has the advantage to easily implement the dissipation in physical systems. We explain how to set this scheme up in some physical examples. Then, we investigate the continuous-time limit of these repeated interactions. We show the Lp and almost sure convergences of the evolution of the system to the solution of a stochastic differential equation, by studying the limit of a perturbed Stochastic Euler Scheme. In a second part of this dissertation on quantum systems, we characterize in a first work classical actions of a quantum environment on a quantum system. In this study, we introduce some “classical” unitary operators representing these actions and we highlight a strong link between them and some random variables, called obtuse random variables. We explain how these random variables are naturally connected to some 3-tensors having some particular symmetries. We particularly show that these 3 tensors are exactly the ones that are diagonalizable in some orthonormal basis. In a second work of this part, we study the continuous-time limit of a variant of the repeated interaction scheme in a case of a bipartite system, that is, a system made of two isolated systems not interaction together. We prove that an explicit Hamiltonian interaction between them appears at the limit. This interaction is due to the action of the environment and the entanglement between the two systems that it creates

Page generated in 0.3705 seconds