Spelling suggestions: "subject:"converter design"" "subject:"converter 1design""
1 |
A design of a future 10 kW converterFant, Sebastian January 2008 (has links)
<p>This master thesis aim to design and evaluate a high power 3-phase DC/AC and AC/AC converter. The purpose is to use it for an electric motor in an aircraft possibly driving electric actuators, a propeller in an UAV or a small vehicle. Factors such as power loss and weight are of importance and will be estimated using known models supplied by various manufacturers of components. Different topologies of semiconductors suitable for this purpose are examined and presented. Extensive resources have been put to properly select the most suitable switching device according to their power loss and weight.</p><p>The need for filters and protective circuits will be estimated according to regulations of common military avionic standards and will be included in the resulting estimation along with simulations to evaluate their need and importance. Snubber circuits will be presented and their specific ability to reduce voltage transients and switching losses will be examined along with some simulations to illustrate their performance. In the final part an estimation of efficiency and weight of higher and lower power models of the same inverter has been made using the same procedure as presented in this paper. Engineering rules have been formed from these estimations to simply be able to calculate the proportions of a future converter of arbitrary rated power.</p>
|
2 |
A design of a future 10 kW converterFant, Sebastian January 2008 (has links)
This master thesis aim to design and evaluate a high power 3-phase DC/AC and AC/AC converter. The purpose is to use it for an electric motor in an aircraft possibly driving electric actuators, a propeller in an UAV or a small vehicle. Factors such as power loss and weight are of importance and will be estimated using known models supplied by various manufacturers of components. Different topologies of semiconductors suitable for this purpose are examined and presented. Extensive resources have been put to properly select the most suitable switching device according to their power loss and weight. The need for filters and protective circuits will be estimated according to regulations of common military avionic standards and will be included in the resulting estimation along with simulations to evaluate their need and importance. Snubber circuits will be presented and their specific ability to reduce voltage transients and switching losses will be examined along with some simulations to illustrate their performance. In the final part an estimation of efficiency and weight of higher and lower power models of the same inverter has been made using the same procedure as presented in this paper. Engineering rules have been formed from these estimations to simply be able to calculate the proportions of a future converter of arbitrary rated power.
|
3 |
Blokující spínaný zdroj 600 W s experimentální samokmitající topologií / Experimental 600 W self-oscillating flyback switching power supplyDarida, Slavomír January 2016 (has links)
Self-oscillating flyback converters are popular circuits due to their simplicity, robustness and low cost of components. They are generally used as low power devices. Mobile phone charger is good example of application. Realization of 600 W self-oscillating flyback converter is main goal of this thesis.
|
4 |
Design and control methods to enhance the efficiency of two-port and three-port DC-DC resonant converters in electric vehicle applicationsAbeysinghe Mudiyanselage, Guvanthi January 2024 (has links)
DC-DC resonant converters benefit from soft switching and reduced peak currents over other topologies. However, the design and control of resonant converters are challenging due to non-linearities in the resonant tanks. This research focuses on design and control methods for two-port and three-port resonant converters in EV applications.
The two-port LLC resonant converter is attractive for on-board charger applications. However, if not appropriately designed, the frequency-modulated LLC converters will have a wide range of switching frequencies and lose efficiency in wide voltage range OBC applications. Hence, practicing proper converter design and control methods is essential to maximize efficiency. This work proposes a design framework for a wide-voltage range LLC converter to enhance efficiency. Topology morphing is used to reduce the effective voltage gain, and an online topology morphing method, along with a cascaded closed-loop control system, is also proposed.
Three-port DC-DC converters can facilitate power transfer among three sources/ sinks. With the emerging trend of dual auxiliary voltages in EVs, the three-port resonant converter topology is an ideal candidate to interface the high voltage battery with low to medium voltages. This work proposes an optimal control method for a TPRC based on duty-ratio and phase-shift control to maximize its efficiency. The control method is optimized using a novel harmonic approximation-based model.
A 300 – 700 V input, 250 – 450 V output, 3.3 kW LLC converter is designed and tested to validate the proposed design and control methods of the LLC converter. The time-weighted averaged efficiency above 96.7% is observed over the entire input voltage range. A 400 – 800 V/ 46 – 50 V/ 10 – 14 V, 6kW rated power TPRC is also designed and tested to validate the proposed optimal control method. Peak efficiency of 96.34% is observed, with a maximum efficiency improvement of 12.4% compared to the conventional phase-shift control. / Dissertation / Doctor of Science (PhD) / DC-DC converters are used in numerous electrical applications to transfer power between an energy source and a load while stepping up or down the voltage levels to match their specifications. During the power transfer, losses occur within the DCDC converter from the switching devices and the other converter elements. For high energy efficiency, these converters must have minimal losses.
Among the different DC-DC converters, resonant converters are attractive due to their reduced power losses. As the automotive industry rapidly moves towards electrification, DC-DC resonant converters can provide efficient power transfer in electric vehicle (EV) applications. However, the design and control of resonant converters are challenging compared to other DC-DC converters. Therefore, practicing proper design and control methods in DC-DC resonant converters is essential. This thesis proposes optimal design and control methods for DC-DC converters in EV applications to enhance efficiency. The proposed methods are validated using hardware prototypes.
|
5 |
DC Fault Current Analysis and Control for Modular Multilevel ConvertersYu, Jianghui 14 February 2017 (has links)
Recent research into industrial applications of electric power conversion shows an increase in the use of renewable energy sources and an increase in the need for electric power by the loads. The Medium-Voltage DC (MVDC) concept can be an optimal solution. On the other hand, the Modular Multilevel Converter (MMC) is an attractive converter topology choice, as it has advantages such as excellent harmonic performance, distributed energy storage, and near ideal current and voltage scalability.
The fault response, on the other hand, is a big challenge for the MVDC distribution systems and the traditional MMCs with the Half-Bridge submodule configuration, especially when a DC short circuit fault happens. In this study, the fault current behavior is analyzed. An alternative submodule topology and a fault operation control are explored to achieve the fault current limiting capability of the converter.
A three-phase SiC-based MMC prototype with the Full-Bridge configuration is designed and built. The SiC devices can be readily adopted to take advantage of the wide-bandgap devices in MVDC applications. The Full-Bridge configuration provides additional control and energy storage capabilities. The full in-depth design, controls, and testing of the MMC prototype are presented, including among others: component selection, control algorithms, control hardware implementation, pre-charge and discharge circuits, and protection scheme.
Systematical tests are conducted to verify the function of the converter. The fault current behavior and the performance of the proposed control are verified by both simulation and experiment. Fast fault current clearing and fault ride-through capability are achieved. / Master of Science / Recent research into industrial applications of electric power conversion shows an increase in the use of renewable energy sources and an increase in the need for electric power by the loads. The Medium-Voltage DC (MVDC) concept can be an optimal solution. On the other hand, the Modular Multilevel Converter (MMC) is an attractive converter topology choice.
The fault response, on the other hand, is a big challenge for the MVDC distribution systems and the traditional MMCs, especially when a DC short circuit fault happens. In this study, the fault current behavior is analyzed. An alternative submodule topology and a fault operation control are explored to achieve the fault current limiting capability of the converter.
A three-phase SiC-based MMC prototype with the Full-Bridge configuration is designed and built. The full in-depth design, controls, and testing of the MMC prototype are presented.
Systematical tests are conducted to verify the function of the converter. The fault current behavior and the performance of the proposed control are verified by both simulation and experiment. Fast fault current clearing and fault ride-through capability are achieved.
|
6 |
Modeling, Real-time Simulation And Design Of Matrix ConvertersGopinath, Dinesh 09 1900 (has links)
Power converters have evolved from the classical low switching frequency thyristorised converters to the modern high-frequency switched mode converters employing fast power devices such as Insulated Gate Bipolar Transistors (IGBTs). This evolution has changed the way power is processed in all the four functional areas of power conversion namely, AC-DC, DC-DC, DC-AC and AC-AC. High frequency switching has made it possible to reduce the size of the converters by using smaller energy storage elements. Switched mode conversion applied to AC-AC power conversion results in the use of two approaches: An indirect (two stage) conversion with a rectifier and an inverter with a dc link storage and a direct conversion scheme with a matrix converter. Matrix converter is a potential candidate in certain applications where a compact power converter design is required. Two approaches in topology, namely direct and indirect matrix converters are well reported in the literature.
This thesis looks at the analysis, modeling and control of matrix converters from the perspective of converter switching functions. The switching functions as proposed for the line frequency switching rectifiers and cycloconverters is extended to the high frequency switching pulse-width modulated inverters and rectifiers. The matrix converter modulation schemes are analysed and a fresh interpretation in terms of these switching functions is presented in this thesis. The application of the switching function based analysis also yields a better insight into popular space phasor moulation techniques employed in matrix converters such as indirect-space-phasor modulation.
The topology of the matrix converter is simple. There are no energy storage elements. However, the control, modulation and protection processes are more complex than other converters. The complexities involved in the control, modulation, commutation and protection of the matrix converter necessitates a much more complex controller capable of carrying out these tasks fast and effectively. In this work, a versatile FPGA based digital controller is designed which is not only capable of carrying out all the modulation, control, commutation and protection requirements of the matrix converter but also, can simulate the converter and the load in real-time. The real-time simulation capabilities of the control and real-time simulation platform are demonstrated with a suitable example of dynamic system. The real-time models of the matrix converter feeding passive load are developed and demonstrated in comparison with offline simulation models.
Matrix converters are buck-derived converters and hence the input currents are discontinuous. Hence design of an appropriate filter becomes necessary. Some guidelines are suggested to design an appropriate input filter considering the non-idealities of the source.
Finally, hardware designs of suitably rated direct and indirect matrix converters are presented and some representative results are given.
|
7 |
Integration of a 3.3 kW, AC/DC bidirectional converter using printed circuit board embedding technology / Intégration d'un convertisseur 3.3 kW, AC/DC, bidirectionnel en utilisant la technologie d'enfouissement PCBCaillaud, Rémy 17 January 2019 (has links)
Les énergies fossiles (Pétrole, Charbon, …) représentent 80 % des énergies consommés. Malheureusement pour l’environnement, elles sont les plus polluantes. Le remplacement actuel des énergies fossiles permet au marché de l’électronique de puissance de grandir d’année en année. L’électronique de puissance permet d’adapter l’énergie électrique à son utilisation finale. Dans la pratique, l’adaptation de l’énergie électrique utilise des convertisseurs. En plus de respecter le volume, l’efficacité et la fiabilité imposés par le cahier des charges pour chaque application, l’électronique de puissance doit aussi permettre de réduire sensiblement les coûts. Le convertisseur doit assurer le fonctionnement électrique du circuit, le support mécanique des composants et la gestion thermique. Le package utilisé par les nouveaux composants à grand gap limite leurs performances. L’intégration des convertisseurs doit développer des méthodes d’interconnexion permettant d’éliminer ce package. L’objectif de la recherche sur l’intégration des convertisseurs est de repousser les limites imposées par un cahier des charges standard tout en assurant ces 3 fonctions principales. Parmi les nombreuses techniques d’intégration, le circuit imprimé (PCB) est mature industriellement, permet la fabrication collective et un assemblage automatisé. L’intégration utilisant le PCB a développé la technique d’enfouissement de puce avec laquelle la puce est directement enfouie dans le PCB sans son package. Cette thèse va étudier la méthode d’enfouissement pour les autres composants nécessaires à la réalisation d’un convertisseur (Condensateurs, Composants Magnétiques). Une optimisation du convertisseur qui doit être réalisé permet de prendre en compte les avantages de cette nouvelle technologie. Un prototype de convertisseur intégré a été réalisé avec des composants utilisant cette technologie. / With the endangering of the environment due to the use of fossil fuels, the power electronics market is growing through the years. The number of applications is increasing in numerous field as, for example, transport (electric car, "more electric" aircraft) or energy (photovoltaic, smart grid). Beyond meeting the volume, efficiency and reliability specifications for each application, power electronics should also reduce substantially costs. Today, the managing of the electric energy uses power electronic converters. The conception of a converter is a multiphysic problem. The converter has to ensure electrical functionality, mechanical support and proper thermal management.The new wide-band gap components are limited in performance by their package. The integration of a converter should use new interconnection methods to avoid the use of packaged components. The trend is to integrate the maximum of components into a single system. This integration can offer benefits such as size and weight reduction, cost saving and reliability improvement by managing the complexity and the high density of interconnection. Among many integration technologies available, Printed Circuit Board (PCB) is well known in the industry, allowing mass production with automated manufacturing and assembly. The PCB integration was developed with the “Die Embedding” technology in which a bare die in embedded directly in the PCB to not use package. This thesis studied the embedding technology on others components necessary to the realization of a converter (Capacitors, Magnetics, …). An optimization of the converter is done taking into account the advantages of this new technology. A prototype of an AC/DC bidirectional converter fully integrated using this technology was realized.
|
8 |
Design Of 1400W Telecom Power Supply With Wide Range Input AC VoltagePrakash, Daiva 04 1900 (has links)
In the fast growing field of Telecommunications, the back up DC power supply plays a vital role in powering the telecom equipment. This DC power supply is a combination of AC-DC Rectifier coupled with a battery bank to support the load when AC input is not available. Figures 0.1 and 0.2 show the line diagram of the DC power supply. The power supply is the most critical element in a telecom installation and it should be highly reliable in order to have un-interrupted service.
(Fig)
Besides reliability, power density and cost are the driving forces behind the success of a power supply in the market. Off late, the reach of telecom in the society is very wide covering remote villages and major metros. Given this environment, the power supply is exposed to extreme input conditions. It is desirable to design the power supply capable of withstanding wide AC input conditions. Another advantage is that the rectifier unit will keep the battery charged so that the battery will have long life.
This thesis is aimed at designing a 1400W (56V/25A) telecom power supply, keeping in view of the issues expressed above. The aim is to design a Switched Mode Rectifier (SMR) that tolerate wide input voltage variations (90Vac to 300Vac). In addition, the design covers unity input power factor, high efficiency (> 90%), high power density ( ), parallel operation and low cost ( ).
Chapter 1 of this thesis covers the context and motivation of the work. Chapter 2 presents the design issues pertaining to power supplies. The normalized description of the power converters is presented. Such a description enables one to compare several circuit topologies in order to make effective design decisions. In a similar way the effectiveness of the switches and mgnetics are presented to enable design decisions in the output stage of the rectifier. Chapter 3 presents the design of the 1400W telecom power supply, keeping in view of the stated specifications.
The performance results of the converter are presented in Chapter 4. All the design goals have been met. The design exercise has also given insights into possible further improvements. Contributions from this work and course of future development work are indicated in the concluding chapter.
|
9 |
Design and Assessment of a Grid Connected Industrial Full-SiC Converter for 690 V GridsFuentes Castro, Carlos Daniel 20 May 2022 (has links)
Die Bedeutung von Leistungshalbleitern mit großem Bandabstand (Wide Band Gap, WBG) nahm in den letzten drei Jahrzehnten kontinuierlich zu. Diese Bauelemente haben das Potenzial, Silizium (Si) - Bauelemente in bestimmten Anwendungen sowie Leistungs- und Frequenzbereichen zu ersetzen. Siliziumkarbid (SiC)-Leistungshalbleiter sind die gegenwärtig am Weitesten entwickelten WBG-Leistungshalbleiter. Dank besonderer Materialeigenschaften zeichnen sich SiC-Leistungshalbleiter im Vergleich zu Si-Bauelementen durch einen geringeren spezifischen Widerstand, eine höhere Schaltgeschwindigkeit, geringere schaltverluste sowie eine höhere maximale Sperrschichttemperatur aus.
Die deutlich erhöhten Herstellungskosten limitieren den Einsatz von SiC-Leistungshalbleitern auf Anwendungen, in denen die Vorteile dieser Bauelemente die höheren Kosten überkompensieren und Systemvorteile ermöglichen. Heute werden SiC-Leistungshalbleiter z.B. in Solarwechselrichtern oder in Elektrofahrzeugen verwendet. Für Stromrichter industrieller elektrischer Antriebe ist die Kosten-Nutzen-Bilanz des Einsatzes von SiC-Leistungshalbleitern gegenwärtig nicht bekannt. Diese Fragestellung motiviert diese Arbeit. Die Auslegung sowie die daraus resultierenden Vor- und Nachteile eines Stromrichters mit SiC-Leistungshalbleitern für elektrische Industrieantriebe ist der Untersuchungsgegenstand dieser Arbeit.
Zu diesem Zweck wurde unter Einhaltung industrieller Auslegungskriterien ein 240 kVA SiC-basierter Stromrichterdemonstrator als aktiver Gleichrichter am dreiphasigen 690 V Niederspannungsnetz untersucht. Auf der Basis einer Stromrichterauslegung für SiC- und Si-Leistungshalbleiter wurde ein theoretischer Vergleich von Kosten, Effizienz, Größe und Gewicht durchgeführt. Die Arbeit stellt zunächst den Stand der Technik für SiC-Leistungshalbleiter dar. Anschließend wird ein geeignetes SiC-MOSFET Module für den industriellen Stromrichter ausgewählt und bezüglich des Schaltverhaltens sowie der Parallelschaltung charakterisiert. Der Auslegung des Stromrichterleistungsteils liegen industrielle Anforderungen zu Grunde. Ein realisierter Demonstrator für einen netzseitigen Stromrichter (Active Front End) ist durch eine symmetrische Parallelschaltung von zwei SiC-Modulen, geeignete Ansteuerschaltungen (Gate Drive Units), eine niedrige Streuinduktivität im Kommutierungskreis sowie ein LCL-Filter mit Standard-Kernmaterialien gekennzeichnet. Der Stromrichtervergleich zeigt, dass der betrachtete Stromrichter mit SiC-Leistungshalbleitern im gesamten Betriebsbereich geringere Verluste verursacht als ein vergleichbarer Stromrichter mit Si-Leistungshalbleitern. Der SiC - basierte Stromichter ermöglicht auch eine deutliche Gewichtsreduktion bei ca. 89% der Systemkosten. Somit stellen SiC-Leistungshalbleiter eine attraktive technische Lösung für die untersuchte Anwendung eines aktiven Gleichrichters für industrielle elektrische Antriebe dar. / Wide bandgap (WBG) power semiconductors have drawn steadily increasing interest in power electronics in the last three decades. These devices have shown the potential of replacing silicon as the default semiconductor solution for several applications in determined power and frequency ranges. Among them the most mature WBG semiconductor material is silicon carbide (SiC), which presents several characteristics at the crystal level that translate in the potential of presenting lower resistivity, be able to switch faster with lower switching loss, and present both higher characteristics to tolerate and dissipate heat when com pared with silicon. However, the same characteristics that make it great also present a different set of drawbacks to be considered, which aligned with its increased cost make it challenging to assess if its advantages are justified for a particular application. Applications that highly value efficiency and/or power density are the most benefited, and converter solutions featuring the technology have already breached into these application markets. However in other applica tions, the line from which silicon carbide starts making sense in the cost/benefits/drawbacks balance is not clear. This is typically the case of industrial applications, which were the main focus and motivation of this work.
Hence, in this work the main goal has been to determine the basic characteristics, advantages and limitations that SiC technology designs for industrial low voltage high power grid connected converters present. To that end, a 690 V,
240 kVA SiC-based grid-tied converter demonstrator following industrial design criteria has been developed. Then, based on this design procedure a theoretical comparison between a 690 V, 190 kVA SiC-based converter against a silicon-based converter designed for the same power output has been performed to compare them regarding cost, efficiency, size and weight. This work also comprises a thorough revision of the state of art of SiC devices, which led to the selection of the switching device. Additionally, a characterization of both single and parallel-connected operation of the semiconductor modules was performed, to determine the module characteristics and its suitability to build the SiC converter demonstrator.
Results show that the converter demonstrator operates as designed, proving that is possible with the corresponding precautions to achieve: a low inductive power loop, balanced parallel connection of SiC modules, adequate driving circuits for the parallel-connected modules and an adequate filtering solution in compliance with grid-codes based on standard core materials for the selected switching frequency. Finally, the theoretical comparison between the two designed power converters shows that, attained to the conditions of the comparison, the SiC converter solution presents efficiency gains over the whole operating range, while presenting substantial weight savings at 89% of the costs of the Si-IGBT design, presenting itself as the cost-effective solution for the presented application requirements under the given design constraints.
|
10 |
Design and Simulation of a 10kW High-Efficiency Dual Active Bridge Converter / Design och simulering av en 10kW Högeffektiv Dual Active Bridge ConverterYang, Fan January 2023 (has links)
The EU has proposed an ambitious goal to achieve widespread E-mobility in both the electrical and commercial sectors. To accomplish this, a substantial number of DC fast-charging stations must be built. These power converters, installed in the DC fast-charging stations (DCFC), differ from traditional DCDC converters as they exhibit high power density, reaching tens of kilowatts. In contrast to traditional non-isolated power converters, isolated power converters offer ideal galvanic isolation, providing protection to both the local power grid and electric vehicles. Among the DC power converters designed for industrial applications, the LLC resonant converters and DAB converters (Dual Active Bridge) have gained significant popularity. When compared to LLC converters, DAB converters demonstrate a more flexible input and output power range, as well as a higher power density. Considering these advantages, a 10kW bidirectional DAB power converter has been designed for the purpose of fulfilling the requirements of this thesis project. The thesis is organized into four distinct parts. The first part focuses on conducting a comprehensive literature review to explore the challenges prevalent in the current electrical field. Various DC-DC topologies are compared based on different factors, including component analysis, controllability, safety considerations, and cost-effectiveness. By examining these aspects, potential solutions for Electric Vehicles (EVs) are identified. In the second part, a specific DC-DC converter with a power rating of 10kW is chosen, utilizing the DAB (Dual Active Bridge) topology. The selection is based on the analysis conducted in the literature review. The thesis delves into the issues and technical challenges associated with this choice, such as reactive power, peak current, zero-voltage switching (ZVS), and phase shift modulation. These topics are thoroughly explored and discussed within the literature study. The second part of the thesis involves the establishment of a DAB model, incorporating mathematical equations and physical derivations. This modeling and design section discusses the energy conversion process, starting from fundamental physical formulas and extending to the overall system setup. Utilizing the proposed model, a control method called SPS (Single Phase Shift) modulation is implemented in the circuit to achieve closed-loop control. Within this part, the relationship between current, voltage, and output power is derived and utilized for the design of a PI closed controller. To address challenges associated with SPS control, such as reactive power elimination and peak current suppression, an EPS (Enhanced Phase Shift) control scheme is introduced. The EPS control scheme not only fulfills the basic requirement of power transfer but also optimizes the system’s overall efficiency. In the third part of the thesis, a simulation is developed to validate the accuracy of the proposed DAB model and control methods. Simulations are implemented using Simulink, a widely used software for dynamic system modeling and simulation. Various aspects of the system are evaluated through the simulation, including the leakage inductor current, voltage waveforms on both the primary and secondary sides and output power. These parameters are plotted and analyzed to assess the performance of the DAB model and control methods. Additionally, loss and efficiency analyses are conducted using PLECS, a simulation platform that specializes in power electronics systems. By inputting the datasheet information of the switches and transformer, PLECS enables the evaluation of losses and efficiency within the system. This analysis provides valuable insights into the performance and energy efficiency of the proposed DAB-based converter. In the final part of the thesis, conclusions are drawn based on the theoretical findings and simulation results obtained throughout the study. These conclusions reflect the overall outcomes and implications of the research conducted. Furthermore, the future work section outlines the tasks that remain unfinished or areas that can be explored in subsequent studies. This section serves as a guide for future researchers, highlighting potential directions for further investigation and improvement in the field of DAB-based DC-DC converters for E-mobility applications. By presenting the conclusions and future work, the thesis provides a comprehensive summary of the research conducted, its contributions, and potential avenues for future research and development. / EU har föreslagit ett ambitiöst mål för att uppnå utbredd e-mobilitet inom både den elektriska och kommersiella sektorn. För att åstadkomma detta måste ett stort antal DC snabbladdningsstationer byggas. Dessa effektomvandlare, installerade i DC-snabbladdningsstationerna (DCFC), skiljer sig från traditionella DC-DC-omvandlare eftersom de uppvisar hög effekttäthet och når tiotals kilowatt. I motsats till traditionella icke-isolerade kraftomvandlare erbjuder isolerade kraftomvandlare idealisk galvanisk isolering, vilket ger skydd för både det lokala elnätet och elfordon. Bland likströmsomvandlarna som är designade för industriella applikationer har LLC-resonantomvandlarna och DABomvandlarna (Dual Active Bridge) vunnit betydande popularitet. Jämfört med LLC-omvandlare uppvisar DAB-omvandlare ett mer flexibelt in- och uteffektområde, såväl som en högre effekttäthet. Med tanke på dessa fördelar har en 10kW dubbelriktad DAB-effektomvandlare designats för att uppfylla kraven i detta examensarbete. Avhandlingen är organiserad i fyra distinkta delar. Den första delen fokuserar på att genomföra en omfattande litteraturgenomgång för att utforska de utmaningar som råder inom det nuvarande elektriska området. Olika DCDC-topologier jämförs baserat på olika faktorer, inklusive komponentanalys, kontrollerbarhet, säkerhetsöverväganden och kostnadseffektivitet. Genom att undersöka dessa aspekter identifieras potentiella lösningar för elektriska fordon (EV). I den andra delen väljs en specifik DC-DC-omvandlare med en märkeffekt på 10kW, som använder DAB-topologin (Dual Active Bridge). Urvalet baseras på den analys som gjorts i litteraturöversikten. Avhandlingen fördjupar sig i de problem och tekniska utmaningar som är förknippade med detta val, såsom reaktiv effekt, toppström, nollspänningsomkoppling (ZVS) och fasskiftsmodulering. Dessa ämnen utforskas och diskuteras grundligt inom litteraturstudien. Den andra delen av examensarbetet omfattar upprättandet av en DAB-modell, innefattande matematiska ekvationer och fysiska härledningar. Det här avsnittet om modellering och design diskuterar energiomvandlingsprocessen, med start från grundläggande fysiska formler och sträcker sig till den övergripande systemuppställningen. Genom att använda den föreslagna modellen implementeras en styrmetod som kallas SPS-modulering (Single Phase Shift) i kretsen för att uppnå sluten-loop-styrning. Inom denna del härleds förhållandet mellan ström, spänning och uteffekt och används för konstruktionen av en sluten PI-regulator. För att ta itu med utmaningar förknippade med SPS-kontroll, såsom eliminering av reaktiv effekt och undertryckning av toppström, introduceras ett EPS-kontrollschema (Enhanced Phase Shift). EPS-kontrollsystemet uppfyller inte bara det grundläggande kravet på kraftöverföring utan optimerar också systemets totala effektivitet. I den tredje delen av avhandlingen utvecklas en simulering för att validera noggrannheten hos den föreslagna DAB-modellen och styrmetoderna. Simuleringar implementeras med Simulink, en mycket använd programvara för dynamisk systemmodellering och simulering. Olika aspekter av systemet utvärderas genom simuleringen, inklusive läckans induktorström, spänningsvågformer på både primär- och sekundärsidan och uteffekt. Dessa parametrar plottas och analyseras för att bedöma prestandan hos DABmodellen och styrmetoderna. Dessutom genomförs förlust- och effektivitetsanalyser med hjälp av PLECS, en simuleringsplattform som är specialiserad på kraftelektroniksystem. Genom att mata in databladsinformationen för switcharna och transformatorn, möjliggör PLECS utvärdering av förluster och effektivitet i systemet. Denna analys ger värdefulla insikter om prestandan och energieffektiviteten hos den föreslagna DAB-baserade omvandlaren. I den sista delen av uppsatsen dras slutsatser baserat på de teoretiska fynden och simuleringsresultat som erhållits genom studien. Dessa slutsatser speglar de övergripande resultaten och konsekvenserna av den genomförda forskningen. Vidare skisserar det framtida arbetsavsnittet de uppgifter som förblir oavslutade eller områden som kan utforskas i efterföljande studier. Det här avsnittet fungerar som en guide för framtida forskare, och lyfter fram potentiella riktningar för ytterligare undersökningar och förbättringar inom området DAB-baserade DC-DC-omvandlare för e-mobilitetstillämpningar. Genom att presentera slutsatserna och det framtida arbetet ger avhandlingen en omfattande sammanfattning av den forskning som bedrivs, dess bidrag och potentiella vägar för framtida forskning och utveckling.
|
Page generated in 0.0719 seconds