• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Helly-Type Theorems

Davenport, Edward W. 08 1900 (has links)
The purpose of this paper is to present two proofs of Helly's Theorem and to use it in the proofs of several theorems classified in a group called Helly-type theorems.
12

The distribution of the volume of random sets and related problems on random determinants /

Alagar, Vangalur S. January 1975 (has links)
No description available.
13

An Algorithm for Computing the Symmetry Point of a Polytope

Belloni, Alexandre, Freund, Robert M. 01 1900 (has links)
Given a closed convex set C and a point x in C, let sym(x,C) denote the symmetry value of x in C, which essentially measures how symmetric C is about the point x. Denote by sym(C) the largest value of sym(x,C) among all x in C, and let x* denote the most symmetric point in C. These symmetry measures are all invariant under linear transformation, change in inner product, etc., and so are of interest in the study of the geometry of convex sets and arise naturally in the evaluation of the complexity of interior-point methods in particular. Herein we show that when C is given by the intersection of halfspaces, i.e., C={x | Ax <= b}, then x* as well as the symmetry value of C can be computed by using linear programming. Furthermore, given an approximate analytic center of C, there is a strongly polynomial-time algorithm for approximating sym(C) to any given relative tolerance. / Singapore-MIT Alliance (SMA)
14

New results in detection, estimation, and model selection

Ni, Xuelei. January 2006 (has links)
Thesis (Ph. D.)--Industrial and Systems Engineering, Georgia Institute of Technology, 2006. / Xiaoming Huo, Committee Chair ; C. F. Jeff Wu, Committee Member ; Brani Vidakovic, Committee Member ; Liang Peng, Committee Member ; Ming Yuan, Committee Member.
15

On the constant of homothety for covering a convex set with its smaller copies

Naszódi, Márton 25 September 2017 (has links)
No description available.
16

Functions of bounded variation and the isoperimetric inequality. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Lin, Jessey. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 79-80). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
17

Linear regularity of closed sets in Banach spaces. / CUHK electronic theses & dissertations collection

January 2004 (has links)
by Zang Rui. / "Nov 2004." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (p. 78-82) / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
18

Counting Convex Sets on Products of Totally Ordered Sets

Barnette, Brandy Amanda 01 May 2015 (has links)
The main purpose of this thesis is to find the number of convex sets on a product of two totally ordered spaces. We will give formulas to find this number for specific cases and describe a process to obtain this number for all such spaces. In the first chapter we briefly discuss the motivation behind the work presented in this thesis. Also, the definitions and notation used throughout the paper are introduced here The second chapter starts with examining the product spaces of the form {1; 2; : : : ;n} × {1; 2}. That is, we begin by analyzing a two-row by n-column space for n > N. Three separate approaches are discussed, and verified, to find the total number of convex sets on the space. A general formula is presented to obtain this total for all n. In the third chapter we take the same {1; 2; : : : ;n} × {1; 2} spaces from Chapter 2 and consider all the scenarios for adding a second disjoint convex set to the space. Adding a second convex set gives a collection of two mutually disjoint sets. Again, a general formula is presented to obtain this total number of such collections for all n. The fourth chapter takes the idea from Chapter 2 and expands it to product spaces {1; 2; : : : ;n} × {1; 2; : : : ;m} consisting of more than two rows. Here the creation of convex sets having z rows from those having z − 1 rows is exploited to obtain a model that will give the total number of z-row convex sets on any n × m space, provided the set occupies z adjacent rows. Finally, the fifth chapter describes all possible scenarios for convex sets to be placed in the {1; 2; : : : ;n}×{1; 2; : : : ;m} space. This chapter then explains the process needed to acquire a count of all convex sets on any such space as well. Chapter 5 ends by walking through this process with a concrete example, breaking it down into each scenario. We conclude by briefly summarizing the results and specifying future work we would like to further investigate, in Chapter 6.
19

A bipolar theorem for $L^0_+(\Om, \Cal F, \P)$

Brannath, Werner, Schachermayer, Walter January 1999 (has links) (PDF)
A consequence of the Hahn-Banach theorem is the classical bipolar theorem which states that the bipolar of a subset of a locally convex vector pace equals its closed convex hull. The space $\L$ of real-valued random variables on a probability space $\OF$ equipped with the topology of convergence in measure fails to be locally convex so that - a priori - the classical bipolar theorem does not apply. In this note we show an analogue of the bipolar theorem for subsets of the positive orthant $\LO$, if we place $\LO$ in duality with itself, the scalar product now taking values in $[0, \infty]$. In this setting the order structure of $\L$ plays an important role and we obtain that the bipolar of a subset of $\LO$ equals its closed, convex and solid hull. In the course of the proof we show a decomposition lemma for convex subsets of $\LO$ into a "bounded" and "hereditarily unbounded" part, which seems interesting in its own right. (author's abstract) / Series: Working Papers SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
20

A Deterministic Approach to Partitioning Neural Network Training Data for the Classification Problem

Smith, Gregory Edward 28 September 2006 (has links)
The classification problem in discriminant analysis involves identifying a function that accurately classifies observations as originating from one of two or more mutually exclusive groups. Because no single classification technique works best for all problems, many different techniques have been developed. For business applications, neural networks have become the most commonly used classification technique and though they often outperform traditional statistical classification methods, their performance may be hindered because of failings in the use of training data. This problem can be exacerbated because of small data set size. In this dissertation, we identify and discuss a number of potential problems with typical random partitioning of neural network training data for the classification problem and introduce deterministic methods to partitioning that overcome these obstacles and improve classification accuracy on new validation data. A traditional statistical distance measure enables this deterministic partitioning. Heuristics for both the two-group classification problem and k-group classification problem are presented. We show that these heuristics result in generalizable neural network models that produce more accurate classification results, on average, than several commonly used classification techniques. In addition, we compare several two-group simulated and real-world data sets with respect to the interior and boundary positions of observations within their groups' convex polyhedrons. We show by example that projecting the interior points of simulated data to the boundary of their group polyhedrons generates convex shapes similar to real-world data group convex polyhedrons. Our two-group deterministic partitioning heuristic is then applied to the repositioned simulated data, producing results superior to several commonly used classification techniques. / Ph. D.

Page generated in 0.0458 seconds