• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 16
  • 12
  • 7
  • 1
  • 1
  • Tagged with
  • 89
  • 89
  • 26
  • 25
  • 25
  • 20
  • 15
  • 15
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

"Ann" artifical neural networks and fuzzy logic models for cooling load prediction/

Bozokalfa, Gökhan. Akkurt, Sedat January 2005 (has links) (PDF)
Thesis (Master)--İzmir Institute Of Technology, İzmir, 2005. / Keywords: Artificial neural networks, fuzzy logic, modeling, cooling load, prediction. Includes bibliographical references (leaves. 44-45).
62

Water conservation through energy conservation

Nyathi, Nongezile Sibhekile. January 2006 (has links)
Thesis (M.Eng.)(Chemical Engineering)--University of Pretoria, 2006. / Accompanied by a CD-ROM: Appendix B. Cooling tower model results. Includes bibliographical references. Available on the Internet via the World Wide Web.
63

Spirulina production in brine effluent from cooling towers

Choonawala, Bilkis Banu January 2007 (has links)
Thesis (M.Tech.:Biotechnology)-Dept. of Biotechnology, Durban University of Technology, 2007 xvi, 185 leaves / Spirulina is a blue-green, multicellular, filamentous cyanobacterium that can grow to sizes of 0.5 millimetres in length. It is an obligate photoautotroph and has a pH growth range from 8.3 to 11.0.The large-scale production of Spirulina biomass depends on many factors, the most important of which are nutrient availability, temperature and light. These factors can influence the growth of Spirulina and the composition of the biomass produced by changes in metabolism. Brine effluent from cooling towers of electricity generating plants may provide an ideal growth medium for Spirulina based on its growth requirements, i.e. high alkalinity and salinity. The aim of this research was to optimise brine effluent from cooling towers by supplementing it with salts, in order to use this optimised effluent in a small open laboratory raceway pond in an attempt to increase the biomass production of Spirulina.
64

Effectiveness of Biocide Substitution and Management Plan Implementation for the Control of

Bones, Adelmarie 05 March 2018 (has links)
After the notorious outbreak and discovery of Legionella bacteria in 1976, the waterborne pathogen was added to the list of disease-causing agents associated with the built environment. Legionella pneumophila was discovered when it was identified as the agent that caused 34 deaths and an outbreak of pneumonia-like symptoms in several attendees of the 1976 American Legion Convention held in Philadelphia (OSHA, 2017). Recently published data from the year 2015 reported more than 6,000 Legionnaires’ cases identified in the United States (CDC, 2016). This is a concerning number given that one in every ten infected persons will die of the disease. It is believed that case numbers are likely under-reported, given that Legionnaires’ disease is very difficult to diagnose. Legionella species live naturally in bodies of water, including lakes and rivers. Legionnaires’ disease has been associated with the introduction of Legionella into manmade water systems. The presence of Legionella has been reported in cooling towers, domestic hot-water systems, humidifiers, decorative fountains, grocery spray misters, spas, whirlpools, and dental water lines, among other systems housing stagnant water (CDC, OSHA, 2017). From an occupational exposure standpoint, cooling towers are considered the most concerning source of Legionella pneumophila exposures, based on data from previous cases (Principe et al., 2017). The purpose of this research was to measure the effectiveness of biocide substitution and maintenance management in evaporative condensers. Such condensers were previously identified as having high counts of Legionella pneumophila in the water and/or on surfaces. The study sites were in the states of Florida and Georgia. Initial water testing for Legionella was carried out between July and August of 2016. Results from 2016 showed high counts of colony forming units (CFU) per millimeter (mL) at baseline assessment. An intervention of biocide substitution and enhanced management planning was recommended to lower or eliminate L. pneumophila from the water basins of the evaporative condensers. Follow-up results of water sampling conducted between July and August 2017 showed reduction of CFU counts after the intervention plan had been implemented for an entire year.
65

An assessment of the impact of dry and wet cooling systems on stake holders

Jonker, Markus Smith 06 February 2012 (has links)
M.Ing. / Water gives life. It waters the fields of farmers; it nurtures the crops and stock of rural communities; it provides recreation for our children, our friends, our families; it supports our power generation, our mines, our industry, and the plants and animals that make up ecosystems. Water is the key to development and a good quality of life in South Africa. South Africa's water belongs to its people. It is the task of the South African Government to care for this water, to seek its fair distribution, and to facilitate its wise use for, amongst other things, social and economical development. Issues such as water resource management, use, protection, water services, etc., are presently governed by a number of policies, acts and regulations. All South Africans has a responsibility regarding the management of the country's resources. The supply of water to its entire people makes it extremely important to optimise the use of this scarce source. Access to water and water availability remains a key factor in ensuring the sustainability of development in Southern Africa. The coal fired power industry is a major user of natural resources; coal for fuel and water for steam generation as well as the cooling systems. It is estimated that 1.5% of the water abstracted in South Africa is used for power generation. The power industry receives its water mainly as abstraction from surface impoundments in the form of rivers and dams. Eskom, as a strategic user of water, is mindful of the importance of water to its business, as well as the development of the country. In addition to the interests of the government as the shareholder, Eskom recognises the legitimate interests, as stakeholders, of specific government departments, employees, consumers, suppliers, investors and lenders of capital, rating agencies, the media, policy and regulatory bodies, trade unions, non-governmental groups and local communities in its affairs. Eskom needs to ensure, through an effective water management strategy, that water is used wisely and effectively and that Eskom's impact on local water resources (surface and underground) is minimised. Eskom therefore has to manage water resources in a manner that will sustain the ecological integrity, support social development and ensure economic growth. Eskom has undertaken to benchmark the power generation industry, in co-operation with the DW AF, in a project aimed at developing the principles of water conservation and water demand management. In order to effectively manage water quality and quantity at Eskom's power stations, and to show Eskom's commitment with regard to water conservation and use, Eskom has compiled its own water and environmental policies.
66

Modelagem fenomenológica do desempenho de torres de resfriamento de água acopladas e estudo de casos. / Phenomenological modeling of performance of coupled water cooling towers and case studies.

Lima Junior, Rafael Candido de 03 June 2011 (has links)
Neste trabalho foi realizada a modelagem fenomenológica do desempenho de uma torre de resfriamento de água e de um sistema de duas torres de resfriamento em série, com temperatura de água de entrada de até 65 ºC. Verificou-se a validade do modelo através de comparação dos resultados previstos com os obtidos em ensaios em uma unidade piloto. Em seguida, através de simulação matemática, a partir do modelo desenvolvido, foi feito o estudo de diversos casos de aplicação. Estudou-se a influência das principais variáveis de operação (vazão de ar, vazão de água e temperatura de bulbo úmido) no desempenho de torres de resfriamento acopladas (em série e em paralelo) e no custo operacional. Verifica-se que a variável de maior influência é a vazão de água que circula pela torre. / This is a study about the phenomenological modeling of the performance of a water cooling tower and a system of two cooling towers in series, with water temperature input up to 65°C. The validity of model was verified by comparing the expected results with those obtained in tests on a pilot plant. After this, through a mathematical simulation, based on the model developed, several cases of application were analyzed. It was studied the influence of main operating variables (air flow, water flow and wet bulb temperature) on the performance of couples cooling towers (in series and parallel) and on operational cost. It was verified the most influential variable is the water flow rate through the tower.
67

Modelagem fenomenológica do desempenho de torres de resfriamento de água acopladas e estudo de casos. / Phenomenological modeling of performance of coupled water cooling towers and case studies.

Rafael Candido de Lima Junior 03 June 2011 (has links)
Neste trabalho foi realizada a modelagem fenomenológica do desempenho de uma torre de resfriamento de água e de um sistema de duas torres de resfriamento em série, com temperatura de água de entrada de até 65 ºC. Verificou-se a validade do modelo através de comparação dos resultados previstos com os obtidos em ensaios em uma unidade piloto. Em seguida, através de simulação matemática, a partir do modelo desenvolvido, foi feito o estudo de diversos casos de aplicação. Estudou-se a influência das principais variáveis de operação (vazão de ar, vazão de água e temperatura de bulbo úmido) no desempenho de torres de resfriamento acopladas (em série e em paralelo) e no custo operacional. Verifica-se que a variável de maior influência é a vazão de água que circula pela torre. / This is a study about the phenomenological modeling of the performance of a water cooling tower and a system of two cooling towers in series, with water temperature input up to 65°C. The validity of model was verified by comparing the expected results with those obtained in tests on a pilot plant. After this, through a mathematical simulation, based on the model developed, several cases of application were analyzed. It was studied the influence of main operating variables (air flow, water flow and wet bulb temperature) on the performance of couples cooling towers (in series and parallel) and on operational cost. It was verified the most influential variable is the water flow rate through the tower.
68

Evaluation and performance prediction of cooling tower rain zones

Pierce, Darren John 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2007. / Cooling tower rain zone performance characteristics such as the loss coefficient and the Merkel number are evaluated and simulated. To this end the influence of drop diameter and drop deformation on the velocity, path length and cooling of single water drops are investigated. Experimental drop size and pressure drop data over a counterflow rain zone are presented and the effect of drop deformation on the pressure drop is investigated using the experimental data and CFD. Using the experimental drop size data and CFD, the performance uncertainty produced by using the Rosin-Rammler drop distribution function as opposed to the discrete drop distribution data is investigated. CFD models are developed to investigate the feasibility of modelling rain zones by assuming a constant drop diameter and to establish which diameter definition is the most representative of a particular polydisperse drop distribution. These models were used to validate the correlations for the rain zone performance characteristics proposed in literature.
69

Air-cooled heat exchangers and cooling towers : thermal-flow performance evaluation and design

Kroger, Detlev G. 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2004. / ENGLISH ABSTRACT: During the last 30 years I have been involved in the theory and practice of thermal engineering and in particular, in the areas of air-cooled heat exchangers and cooling towers for the power, refrigeration, process and petrochemical industries in South Africa and internationally. During this period, I have authored and co-authored more than 120 papers that were published in technical journals or presented at conferences nationally or internationally. Most of these papers are included in a manuscript entitled "Air-cooled Heat Exchangers and Cooling Towers", in which Ipresent a systematic approach to the thermal performance evaluation and design of industrial air-cooled heat exchangers and cooling towers. This original publication also includes the relevant practice applicable to the design of cooling systems, based on my experience as a consultant to industry. Design offices throughout the world presently follow our design methods, or at least employ many of our research results. Our work has furthermore contributed to the development of improved cooling system designs (e.g. new dephlegmator header designs), components (e.g. single-row flattened finned tubes) and product improvement and quality control (e.g. performance testing and measurement of thermal contact resistance between fin and tube during production). Many of our research findings have found application in the modification of existing cooling systems. The manuscript has also been used as reference work during the presentation of short courses to practising engineers and consultants in industry and to engineering graduates at the University of Stellenbosch. A two-volume edition of this manuscript was published by PennWell Corp., Tulsa, Oklahoma, USA in 2004. / AFRIKAANSE OPSOMMING: Gedurende die laaste 30 jaar was ek betrokke by die teorie en praktyk van lugverkoelde warmteoordraers en koeltorings vir die kragopwekkings-, verkoelings-, proses- en petro-chemiesenywerhede in Suid-Afrika sowel as in die buiteland. Gedurende hierdie periode was ek outeur en mede-outeur van meer as 120 publikasies wat in tegniese tydskrifte, of by plaaslike of oorsese konferensies aangebied is. Die meeste van hierdie publikasies vorm deel van 'n manuskrip getiteld "Air-cooled Heat Exchangers and Cooling Towers" waarin ek 'n sistematiese benadering tot die bepaling van die termiese vermoë en ontwerp van industriële lugverkoelde warmteoordraers en koeltorings aanbied. Hierdie oorspronklike publikasie bevat ook die relevante praktyk wat van toepassing is op verkoelingsaanlegte. Ontwerpkantore wêreldwyd volg tans hierdie ontwerpsmetodes, of gebruik ten minste baie van ons navorsingsresultate. Ons werk het verder bygedra tot die ontwikkeling van verbeterde verkoelingsaanlegte (bv. nuwe deflegmatore), komponente (bv. enkelbuisry platvinbuise ) en verbeterde produkte en kwaliteitskontrole (bv. toetsing van verkoelingsvermoë oftermiese kontakweerstand tussen vin en buis gedurende produksie). Baie van ons bevindinge het toepassing gevind in die modifikasie van verkoelingsaanlegte. Die manuskrip is ook as verwysing gebruik gedurende die aanbieding van kort kursusse aan ingenieurs in die praktyk en aan nagraadse studente aan die Universiteit van Stellenbosch. 'n Twee-volume uitgawe van die manuskrip is deur PennWell Corp., Tulsa, Oklahome, VSA in 2004 gepubliseer.
70

Performance evaluation of natural draught cooling towers with anisotropic fills

Reuter, Hanno Carl Rudolf 12 1900 (has links)
Thesis (PhD) -- University of Stellenbosch, 2010. / ENGLISH ABSTRACT: In the design of a modern natural draught wet-cooling tower (NDWCT), structural and performance characteristics must be considered. Air flow distortions and resistances must be minimised to achieve optimal cooling which requires that the cooling towers must be modelled two-dimensionally and ultimately threedimensionally to be optimised. CFD models in literature are found to be limited to counterflow cooling towers packed with film fill, which is porous in one direction only and generally has a high pressure drop, as well as purely crossflow cooling towers packed with splash fill. This simplifies the analysis considerably as the effects of flow separation at the air inlet are minimised and fill performance is determined using the method of analysis originally employed to determine the fill performance characteristics from test data. Many counterflow cooling towers are, however, packed with trickle and splash fills which have anisotropic flow resistances, which means the fills are porous in all flow directions and thus air flow can be oblique through the fill, particularly near the cooling tower air inlet. This provides a challenge since available fill test facilities and subsequently fill performance characteristics are limited to purely counter- and crossflow configuration. In this thesis, a CFD model is developed to predict the performance of NDWCTs with any type of spray, fill and rain zone configuration, using the commercial code FLUENT®. This model can be used to investigate the effects of different: atmospheric temperature and humidity profiles, air inlet and outlet geometries, air inlet heights, rain zone drop size distributions, spray zone performance characteristics, variations in radial water loading and fill depth, and fill configurations or combinations on cooling tower performance, for optimisation purposes. Furthermore the effects of damage or removal of fill in annular sections and boiler flue gas discharge in the centre of the tower can be investigated. The CFD modelling of NDWCTs presents various options and challenges, which needed to be understood and evaluated systematically prior to the development of a CFD model for a complete cooling tower. The main areas that were investigated are: spray and rain zone performance modelling by means of an Euler-Lagrangian model; modelling of air flow patterns and flow losses; modelling of fill performance for oblique air flow; modelling of air pressure and temperature profiles outside and inside the cooling tower. The final CFD results for the NDWCT are validated by means of corresponding one-dimensional computational model data and it is found that the performance of typical NDWCTs can be enhanced significantly by including protruding platforms or roundings at the air inlet, reducing the mean drop size in the rain zone, radially varying the fill depth and reducing the air inlet height. / AFRIKAANSE OPSOMMING: By die ontwerp van ‘n moderne natuurlike trek nat koeltoring (NTNK), moet strukturele en werkverrigtings eienskappe in ag geneem word. Wanverdeelde lugvloei en vloeiweerstande moet geminimaliseer word om optimale verkoeling te bewerkstellig, wat vereis dat die koeltorings twee-dimensioneel en uiteindelik driedimensioneel gemodelleer moet word om hulle te kan optimeer. Dit is gevind dat berekeningsvloeidinamika (BVD of “CFD” in engels) modelle in die literatuur, beperk is tot teenvloei koeltorings gepak met film tipe pakking, wat net in een vloeirigting poreus is en boonop gewoonlik ook ‘n hoë drukval het, sowel as suiwer dwarsvloei koeltorings met spatpakking. Hierdie vergemaklik die analise aansienlik omdat die effekte van vloeiwegbreking by die luginlaat verklein word en die pakking se werkverrigtingsvermoë bereken kan word met die analise metode wat oorspronklik gebruik is om die pakkingseienskappe vanaf toets data te bepaal. Baie teenvloei koeltorings het egter drup- (“trickle”) of spatpakkings met anisotropiese vloeiweerstand, wat beteken dat die pakking poreus is in alle vloeirigtings en dat die lug dus skuins deur die pakking kan vloei, veral naby die koeltoring se lug inlaat. Hierdie verskaf ‘n uitdaging aangesien beskikbare pakking toetsfasiliteite, en dus ook pakking karakteristieke, beperk is tot suiwer teenvloei en dwarsvloei konfigurasie. ‘n BVD model word in hierdie tesis ontwikkel wat die werkverrigtingsvermoë van NTNK’s kan voorspel vir enige sproei, pakking en reënsone konfigurasie deur van die kommersiële sagteware FLUENT® gebruik te maak. Hierdie model kan gebruik word om die effekte van verskillende: atmosferiese temperatuur- en humiditeitsprofiele, lug inlaat en uitlaat geometrië, lug inlaat hoogtes, reënsone druppelgrootteverdelings, sproeisone werkverrigtingskarakteristieke, variasie in radiale waterbelading en pakking hoogte, en pakking konfigurasies of kombinasies op koeltoringvermoë te ondersoek vir optimerings doeleindes. Verder kan die effekte van beskadiging of verwydering van pakking in annulêre segmente, en insluiting van ‘n stoomketel skoorsteen in die middel van die toring ondersoek word. Die BVD modellering van NTNK bied verskeie moontlikhede en uitdagings, wat eers verstaan en sistematies ondersoek moes word, voordat ‘n BVD model van ‘n algehele NTNK ontwikkel kon word. Die hoof areas wat ondersoek is, is: sproeien reënsone modellering mbv ‘n Euler-Lagrange model; modellering van lugvloeipatrone en vloeiverliese; modellering van pakking verrigting vir skuins lugvloeie; modellering van lugdruk- en temperatuurprofiele buite en binne in die koeltoring. Die BVD resultate word mbv van data van ‘n ooreenstemmende eendimensionele berekeningsmodel bevestig en dit is bevind dat die werkverrigting van ‘n tipiese NTNK beduidend verbeter kan word deur: platforms wat uitstaan of rondings by die luginlaat te installeer, die duppelgrootte in die reënsone te verklein, die pakkingshoogte radiaal te verander, en die luginlaathoogte te verlaag.

Page generated in 0.1227 seconds