• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cooperative observation of multiple moving targets: an evolutionary approach

Andersson, Daniel January 2003 (has links)
The interest for cooperative robots has increased considerably in recent years and one of the research issues within this domain is how to evolve heterogeneity in a team. The research today is however either focusing on diversity in hardware (e.g. sensory system) or diversity of behaviour. This dissertation extends this research and presents experiments that attempts to 'co-evolve' heterogeneity at both the hardware level and the behavioural level. The results show that the team behaviour evolved depends on the complexity of the task where adding constraints or increasing the difficulty of the problem lead to better team behaviour. Our belief was that the performance of the team should benefit from using robots that has been evolved at the hardware level together with the behavioural level. This, however, could not be proved to be true, but the idea that these two should be kept together in order to evolve heterogeneity in a team is still believed.
12

The State of the Art in Distributed Mobile Robotics / Forskningsframkanten inom Distribuerad Mobil Robotik

Adolfsson, Victor January 2001 (has links)
Distributed Mobile Robotics (DMR) is a multidisciplinary research area with many open research questions. This is a survey of the state of the art in Distributed Mobile Robotics research. DMR is sometimes referred to as cooperative robotics or multi-robotic systems. DMR is about how multiple robots can cooperate to achieve goals and complete tasks better than single robot systems. It covers architectures, communication, learning, exploration and many other areas presented in this master thesis. / Uppsatsen är en brett spektrum på vilken forskning som pågår rörande distribuerad mobil robotik, dvs hur många robotar kan samverka för att lösa uppgifter. / Adress: Victor Adolfsson Folkparksvägen 12:24 372 38 Ronneby Telefon: 0457-171 42 Mobil: 0709-441389
13

Navega??o cooperativa de um rob? human?ide e um rob? com rodas usando informa??o visual

Santiago, Gutemberg Santos 30 May 2008 (has links)
Made available in DSpace on 2014-12-17T14:55:06Z (GMT). No. of bitstreams: 1 GutembergSS.pdf: 569123 bytes, checksum: 6f85b5ee47010d2d331986f17689304b (MD5) Previous issue date: 2008-05-30 / This work presents a cooperative navigation systemof a humanoid robot and a wheeled robot using visual information, aiming to navigate the non-instrumented humanoid robot using information obtained from the instrumented wheeled robot. Despite the humanoid not having sensors to its navigation, it can be remotely controlled by infra-red signals. Thus, the wheeled robot can control the humanoid positioning itself behind him and, through visual information, find it and navigate it. The location of the wheeled robot is obtained merging information from odometers and from landmarks detection, using the Extended Kalman Filter. The marks are visually detected, and their features are extracted by image processing. Parameters obtained by image processing are directly used in the Extended Kalman Filter. Thus, while the wheeled robot locates and navigates the humanoid, it also simultaneously calculates its own location and maps the environment (SLAM). The navigation is done through heuristic algorithms based on errors between the actual and desired pose for each robot. The main contribution of this work was the implementation of a cooperative navigation system for two robots based on visual information, which can be extended to other robotic applications, as the ability to control robots without interfering on its hardware, or attaching communication devices / Este trabalho apresenta um sistema de navega??o cooperativa de um rob? human?ide e um rob? com rodas usando informa??o visual, com o objetivo de efetuar a navega??o do rob? human?ide n?o instrumentado utilizando-se das informa??es obtidas do rob? com rodas instrumentado. Apesar do human?ide n?o possuir sensores para sua navega??o, pode ser remotamente controlado por sinal infravermelho. Assim, o rob? com rodas pode controlar o human?ide posicionando-se atr?s dele e, atrav?s de informa??o visual, localiz?-lo e naveg?-lo. A localiza??o do rob? com rodas ? obtida fundindo-se informa??es de odometria e detec??o de marcos utilizando o filtro de Kalman estendido. Os marcos s?o detectados visualmente, e suas caracter?sticas s?o extra?das pelo o processamento da imagem. As informa??es das caracter?sticas da imagem s?o utilizadas diretamente no filtro de Kalman estendido. Assim, enquanto o rob? com rodas localiza e navega o human?ide, realiza tamb?m sua localiza??o e o mapeamento do ambiente simultaneamente (SLAM). A navega??o ? realizada atrav?s de algoritmos heur?sticos baseados nos erros de pose entre a pose dos rob?s e a pose desejada para cada rob?. A principal contribui??o desse trabalho foi a implementa??o de um sistema de navega??o cooperativa entre dois rob?s baseados em informa??o visual, que pode ser estendido para outras aplica??es rob?ticas, dado a possibilidade de se controlar rob?s sem interferir em seu hardware, ou acoplar dispositivos de comunica??o
14

Safe and flexible hybrid control architecture for the navigation in formation of a group of vehicles / Architecture de contrôle / commande sûre et flexible pour la navigation en formation d'un groupe de véhicules

Vilca Ventura, José Miguel 26 October 2015 (has links)
Plusieurs laboratoires de robotique à travers le monde travaillent sur le développement de stratégies innovantes pour la navigation autonome de véhicules élémentaires ou en convoi. Dans ce contexte, nos travaux de thèse s’inscrivent principalement dans le cadre de la navigation en formation d’un groupe de véhicules dans des environnements structurés. La complexité de ces systèmes multi-robots ne permet pas l’utilisation directe de techniques classiques de perception et/ou de contrôle/commande. Nos travaux ont consisté à décomposer le contrôle global, dédié à la réalisation de la tâche complexe, en un ensemble de comportements/contrôleurs élémentaires précis et fiables (e.g., évitement d’obstacles, suivi de trajectoire, attraction vers une cible, navigation en formation, etc.). Ces comportements lient les différentes informations fournies par les capteurs aux actions des véhicules. Pour garantir les critères de performances imposés à notre architecture de contrôle/commande (e.g., stabilité, robustesse et/ou borner les erreurs maximales), les potentialités des systèmes hybrides ont été considérées. Cette architecture de contrôle a été validée, dans un premier temps, sur des véhicules pris individuellement, en utilisant notamment une stratégie de navigation sûre et flexible utilisant des points de passage. Cette navigation permet au véhicule d’effectuer différentes manœuvres entre ces points de passage (pour éviter par exemple des obstacles dans l’environnement) et ce sans avoir à planifier/re-planifier des trajectoires globales dans l’environnement. Une loi de commande spécifique, permettant une attraction stable (au sens de Lyapunov) et précise vers des cibles statiques ou dynamiques a été par ailleurs développée. Cette loi de commande garantit la convergence du véhicule vers chaque point de passage tout en garantissant des trajectoires sûres. Par ailleurs, un algorithme nommé OMWS (pour Optimal Multi-criteria Waypoint Selection) a été proposé pour sélectionner les configurations optimales des points de passage dans l’environnement. Cet algorithme permet de garantir des mouvements sûrs et fiables du véhicules en tenant compte des contraintes et incertitudes liées à la navigation du véhicule. Par la suite, l’architecture de contrôle/commande proposée a été étendue aux systèmes multi-robots en utilisant la combinaison d’une approche leader-suiveur et comportementale. Un important aspect de la navigation multi-robots est la reconfiguration dynamique de la formation en fonction du contexte de la navigation (e.g., passer d’une configuration triangle vers ligne si la largeur de la voie de navigation ne suffisait pas). Ainsi, des stratégies de reconfiguration dynamique ont été proposées, permettant de garantir la sureté de la formation même au moment des transitions entre configurations. Il est à noter par ailleurs que des métriques spécifiques ont été proposées pour quantifier la fiabilité et la robustesse des stratégies multi-robots proposées. Plusieurs simulations et expérimentations avec des véhicules urbains (VIPALABs) nous ont permis de confirmer la viabilité et efficacité des architectures de contrôle/commande proposées pour la navigation en formation d’un groupe de VIPALABs. / Beyond the interest of robotics laboratories for the development of dedicated strategies for single vehicle navigation, several laboratories around the world are more and more involved in the general challenging field of cooperative multi-robot navigation. In this context, this work deals with the navigation in formation of a group of Unmanned Ground Vehicles (UGVs) dedicated to structured environments. The complexity of this Multi-Robot System (MRS) does not permit the direct use of neither classical perception nor control techniques. To overcome this problem, this work proposes to break up the overall control dedicated to the achievement of the complex task into a group of accurate and reliable elementary behaviors/controllers (e.g., obstacles avoidance, trajectory tracking, target reaching, navigation in formation, formation reconfiguration, etc.). These behaviors are linked to different information given by the sensors to the actions of vehicles. To guarantee the performances criteria (e.g., stability, convergence, state errors) aimed by the control architecture, the potentialities of hybrid controllers (which controlling continuous systems in the presence of discrete events) are considered. This control architecture is validated for a single vehicle to perform safe and flexible autonomous navigation using an appropriate strategy of navigation through suitable set of waypoints. This flexible navigation allows different vehicle maneuvers between waypoints (e.g., target reaching or obstacle avoidance) without using any trajectory planning nor replanning. The designed control law based on Lyapunov synthesis guarantees the convergence to assigned waypoint while performing safe trajectories. Furthermore, an algorithm to select suitable waypoints’ positions, named Optimal Multi-criteria Waypoint Selection (OMWS), in structured environments while taking into account the safe and reliable vehicle movements, and vehicle constraints and uncertainties is proposed. Subsequently, the control architecture is extended to Multi-Robot Formation (MRF) using a combination of Leader-Follower and behavior-based approaches. An important cooperative MRS issues in this thesis is the dynamic reconfiguration of the formation according to the context of navigation (e.g., to pass from a triangle configuration towards a line if the width of the navigation way is not sufficient). The proposed Strategy for Formation Reconfiguration (SFR) guarantees the stability and the safety of the MRS at the time of the transitions between configuration (e.g., line towards square, triangle towards line, etc.). Therefore, a safe, reactive and dynamic MRF is obtained. Moreover, the degrees of multi-robot safety, stability and reliability of the system are quantified via suitable metrics. Simulations and experiments using urban vehicles (VIPALABs) of the Institut Pascal laboratory allow to perform exhaustive experiments of the proposed control architecture for the navigation in formation of a group of UGVs.

Page generated in 0.1028 seconds