• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Recycling Process for Li-Ion Batteries

Zou, Haiyang 24 April 2012 (has links)
The rechargeable secondary Lithium ion (Li-ion) battery is expected to grow to more than $6.3 billion by 2012 from ~$4.6 billion in 2006. With the development of personnel electronics, hybrid and electric vehicles, Li-ion batteries will be more in demand. However, Li-ion batteries are not widely recycled because it is not economically justifiable (in contrast, at present more than 97% Lead-acid batteries are recycled). So far, no commercial methods are available to recycle different chemical Li-ion batteries economically and efficiently. Considering our limited resources, environmental impact, and national security, Li-ion batteries must be recycled. A new methodology with low temperature and high efficiency is proposed in order to recycle Li-ion batteries economically and with industrial viability. The separation and synthesis of cathode materials (most valuable in Li-ion batteries) from recycled components are the main focus of the proposed research. The analytical results showed that the recycling process is practical and has high recovery efficiency, create great commercial value as well.
2

An Investigation of TiO<sub>2</sub>-ZnFe<sub>2</sub>O<sub>4</sub> Nanocomposites for Visible Light Photocatalysis

Wade, Jeremy 24 March 2005 (has links)
Environmental pollution on a global scale is expected to be the greatest problem that chemical scientists will face in the 21st century, and an increasing number of these scientists are looking to new photocatalytic systems for the solution. Existing photocatalytic systems are effective for the decomposition of many unwanted organics through the use of efficient semiconductor photocatalysts activated by ultra-violet (UV) irradiation. The demand for visible light activated photocatalytic systems is increasing rapidly. Currently, however, the efficiency and availability of photocatalysts which can be activated effectively by the solar spectrum and especially indoor lighting is severely limited. The purpose of this project is to investigate the potential of a TiO2-ZnFe2O4 alloyed nanocomposite for use as a visible light activated photocatalyst. An overview of the principles of photocatalysis is first provided. Relevant properties of pure and modified TiO2 are next discussed, and results of studies on structural and photocatalytic properties are presented. Alloyed TiO2-ZnFe2O4 nanocomposites are discussed in detail and their crystal structure, particle size, particle interaction, optical characteristics, and photoactivity are discussed in detail. Measurements characterizing the alloys are carried out using XRD, SEM, EDS, UV-Vis spectroscopy, and photodegradation procedures. The photoactivity of the alloys is carefully studied through phenol degradation experiments, and recommendations are provided to improve the photocatalysts under investigation.

Page generated in 0.0478 seconds