• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 12
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inferring the evolution pathways and the explosion mechanism of core-collapse supernova through nebular spectroscopy / 後期スペクトルを軸とした超新星の親星進化と爆発機構の解明

FANG, Qiliang 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24419号 / 理博第4918号 / 新制||理||1702(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 前田 啓一, 講師 LEE Shiu Hang, 教授 太田 耕司 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
2

Multi-dimensional Hydrodynamics of Core-collapse Supernovae

Murphy, Jeremiah Wayne January 2008 (has links)
Core-collapse supernovae are some of the most energetic events in the Universe, they herald the birth of neutron stars and black holes, are a major site for nucleosynthesis, influence galactic hydrodynamics, and trigger further star formation. As such, it is important to understand the mechanism of explosion. Moreover, observations imply that asymmetries are, in the least, a feature of the mechanism, and theory suggests that multi-dimensional hydrodynamics may be crucial for successful explosions. In this dissertation, we present theoretical investigations into the multi-dimensional nature of the supernova mechanism. It had been suggested that nuclear reactions might excite non-radial g-modes (the ε-mechanism) in the cores of progenitors, leading to asymmetric explosions. We calculate the eigenmodes for a large suite of progenitors including excitation by nuclear reactions and damping by neutrino and acoustic losses. Without exception, we find unstable g-modes for each progenitor. However, the timescales for growth are at least an order of magnitude longer than the time until collapse. Thus, the ε-mechanism does not provide appreciable amplification of non-radial modes before the core undergoes collapse. Regardless, neutrino-driven convection, the standing accretion shock instability, and other instabilities during the explosion provide ample asymmetry. To adequately simulate these, we have developed a new hydrodynamics code, BETHE-hydro that uses the Arbitrary Lagrangian-Eulerian (ALE) approach, includes rotational terms, solves Poisson’s equation for gravity on arbitrary grids, and conserves energy and momentum in its basic implementation. By using time dependent arbitrary grids that can adapt to the numerical challenges of the problem, this code offers unique flexibility in simulating astrophysical phenomena. Finally, we use BETHE-hydro to investigate the conditions and criteria for supernova explosions by the neutrino mechanism. We find that a critical luminosity/ mass-accretion-rate condition distinguishes non-exploding from exploding models in hydrodynamic 1D and 2D simulations. Importantly, the critical luminosity for 2D simulations is found to be ∼70% of the critical luminosity for 1D simulations. We identify the specifics ofmulti-dimensional hydrodynamic simulations that enable explosions at lower neutrino luminosities in 2D and discuss how these results might foreshadow successful explosions by eventual 3D radiation-hydrodynamic simulations.
3

Nucleosynthesis Constraints on the Energy Growth Timescale of a Core-collapse Supernova Explosion / 重力崩壊型超新星の爆発タイムスケールについて 元素合成からの制約

Sawada, Ryo 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22249号 / 理博第4563号 / 新制||理||1655(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 前田 啓一, 講師 LEE Shiu Hang, 教授 長田 哲也 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
4

Core-collapse supernovae: neutrino-dark matter phenomenology and probes of internal physics

Heston, Sean MacDonald 08 May 2024 (has links)
The standard model of particle physics cannot currently explain the origin of neutrino masses and anomalies that have been observed at different experiments. One solution for this is to introduce a beyond the standard model origin for these issues, which introduces a coupling between neutrinos and dark matter. Such an interaction would have implications on cosmology and would be constrained by astrophysical neutrino sources. A promising astrophysical source to probe this interaction is core-collapse supernovae as they release ~3x10^53 erg in neutrinos for each transient. However, more observations that constrain the internal physics of core-collapse supernovae are needed in order to better understand their neutrino emission. This dissertation studies two probes of internal physics that allow for a better understanding of the neutrino emission from core-collapse supernovae. The first is a novel approach to try and detect more supernova neutrinos that do not come from galactic events nor from the diffuse supernova background. This is accomplished by doing an offline timing coincidence search at neutrino detectors with a search window determined by optical observations of core-collapse supernovae. With a two-tank Hyper-Kamiokande, this allows for ~1 neutrino detection every 10 years with a confidence level of ~2.6 sigma, resulting from low nearby core-collapse rates and large background rates in the energy range of interest. The second probe of internal physics is high energy gamma-rays from the decays of unstable nuclei in proto-magnetar jets. The abundance distribution of the unstable nuclei depends directly on the neutrino emission, which controls the electron fraction, as well as properties of the proto-magnetar. We find that different proto-magnetar properties produce gamma-ray signals that are distinguishable from each other, and multiple types of observations allow for estimations of the jet and proto-magnetar properties. These gamma-ray signals are detectable for on-axis jets out to extragalactic distances, ~35 Mpc in the best case, and for off-axis jets the signal is only detectable for galactic or local galaxies depending upon the viewing angle. This dissertation also studies a phenomenological constraint on the interactions between neutrinos and dark matter. Using the neutrino emission from supernovae and the inferred dark matter distributions in Milky Way dwarf spheroidals, we constrain the amount of energy the neutrinos can inject into the dark matter sub-halos. This then allows a constraint on the interaction cross-section between neutrinos and dark matter with assumptions about the interaction kinematics. Assuming Lambda-CDM to be correct, the neutrinos cannot interact with low mass dark matter too often as it will become gravitationally unbound, changing the mass of the core we see today. For high mass dark matter, neutrinos can only inject a fraction of ~6.8x10^-6 of their energy in order to not conflict with estimates of the current shapes of the dark matter sub-halos. The constraints we obtain are sigma_nu-DM(E_nu=15 MeV, m_DM>130 GeV) ~ 3.4x10^-23 cm^2 and sigma_nu-DM(E_nu=15 MeV, m_DM <130 GeV) ~ 3.2x10^-27} (m_DM/1 GeV)^2 cm^2, which is slightly stronger than previous bounds for these energies. Consideration of baryonic feedback or host galaxy effects on the dark matter profile can strengthen this constraint. / Doctor of Philosophy / In our current understanding of the physics of the particles that govern how the universe behaves, there is no way to explain the properties we observe for the neutrino. Neutrinos were originally theorized to have zero mass, however neutrino experiments suggests otherwise. The current model of particle physics cannot explain how the neutrinos have mass, therefore an viable way to explain it is to introduce new physics that can generate the neutrino masses. A way to do this is to allow the neutrinos to interact with dark matter, which is matter that does not interact with light and is therefore invisible to the human eye. We know dark matter should exist in the universe due to the gravitational effects it has, making things like galaxies much heavier than what the stars and gas we see can explain. If neutrinos and dark matter interact, we should be able to see the effects of these interactions in the universe, and also possibly at locations where many neutrinos are produced. One such source of neutrinos in the universe are core-collapse supernovae, which are the deaths of massive stars and produce copious amounts of neutrinos. This dissertation studies signals that allow us to better understand the neutrino emission from core-collapse supernovae. One of these signals comes from summing the neutrinos we detect from many distant core-collapse supernovae. This technique uses the optical observations of the supernovae to give us a time window around which we can go through neutrino detector data to find if there are any neutrino detections that cannot be explained as coming from background events. Another method is to observe gamma-rays, high energy photons, that come from the radioactive decay of elements in jets moving near the speed of light powered by rare core-collapse supernovae. The specific gamma-rays and the overall brightness of them allows for an estimation of the properties of the neutrino emission and properties of the central engine that accelerates the jet to near the speed of light. This dissertation also studies the implications of a possible interactions in small and dim satellite galaxies of the Milky Way known as dwarf spheroidals. The shape of the dark matter that is distributed in these dwarf spheroidals can be inferred from the motion of the stars in that dwarf spheroidal, and this shape disagrees with the prevailing theory of dark matter in the universe. We take advantage of this disagreement to place an upper limit on both the mass loss that can occur in this region and the energy that past core-collapse supernovae within the dwarf spheroidals can inject into the dark matter. The mass loss bound lets us place a constraint on how often neutrinos can interact with light dark matter particles. The energy injection limit and an assumption on the energy transfer in each interaction between dark matter and neutrinos allows us to constrain how often the interaction can occur for heavy dark matter particles.
5

Stellar iron core collapse in {3+1} general relativity and the gravitational wave signature of core-collapse supernovae

Ott, Christian David January 2006 (has links)
I perform and analyse the first ever calculations of rotating stellar iron core collapse in {3+1} general relativity that start out with presupernova models from stellar evolutionary calculations and include a microphysical finite-temperature nuclear equation of state, an approximate scheme for electron capture during collapse and neutrino pressure effects. Based on the results of these calculations, I obtain the to-date most realistic estimates for the gravitational wave signal from collapse, bounce and the early postbounce phase of core collapse supernovae. I supplement my {3+1} GR hydrodynamic simulations with 2D Newtonian neutrino radiation-hydrodynamic supernova calculations focussing on (1) the late postbounce gravitational wave emission owing to convective overturn, anisotropic neutrino emission and protoneutron star pulsations, and (2) on the gravitational wave signature of accretion-induced collapse of white dwarfs to neutron stars. / Ich präsentiere die ersten Computer-Simulationen des rotierenden Kollapses stellarer Eisenkerne, die in der {3+1}-Zerlegung der Allgemeinen Relativitätstheorie durchgeführt werden und Vorsupernova-Sternmodelle aus Sternentwicklungsrechnungen, eine heiße nukleare Zustandsgleichung und ein näherungsweises Verfahren zur Beschreibung des Elektroneneinfangs enthalten und Neutrinodruck-Effekte berücksichtigen. Basierend auf den Ergebnissen dieser Rechnungen erhalte ich die zur Zeit realistischsten Vorhersagen für das Gravitationswellensignal der Kollaps, Abprall, Abkling und frühen Nach-Abprallphase einer Kern-Kollaps-Supernova. Neben den {3+1} Simulationen diskutiere ich newtonsche axisymmetrische Kern-Kollaps-Supernova-Simulationen mit Schwerpunkten auf: (1) der Gravitationswellenabstrahlung in der späten Nach-Abprallphase durch Konvektionsströmungen, anisotropische Neutrinoemission und Proto-Neutronenstern Pulsationen und (2) der Gravitationswellensignatur des Kollapses weißer Zwergsterne zu Neutronensternen, der durch Akkretion eingeleitet wird.
6

The role of rotation and magnetic fields in a core collapse supernova

Akiyama, Shizuka 05 August 2013 (has links)
While the process that converts implosion into explosion in core collapse supernovae is poorly understood, their observed asphericity provides new constraints on the physics of these events. Since pulsars are rotating and magnetized neutron stars, there is no doubt that rotation and magnetic fields are inherent to the exploding engine. We have shown that magnetic field amplification is an inevitable by-product of the differential rotation that accompanies core-collapse. We performed 1D core-collapse simulations of rotating iron cores with various rotational profiles and velocities. We found that differential rotation was a generic feature of rotating iron core collapse. As a result, the magnetorotational instability (MRI) generates magnetic fields of order 10¹⁵⁻¹⁷ G in a few tens of milliseconds where the negative shear is the strongest. Although magnetic fields of order 10¹⁵⁻¹⁷ G are very strong, they are not strong enough to modify the equation of state of degenerate electron gas near the proto-neutron star. The corresponding MHD luminosity available is ~10⁵² erg s⁻¹, which can modify the explosion dynamics if the power is sustained for a fraction of a second. When rotational effects are included, we found that there is a critical iron core rotation rate that gives the most rapidly rotating proto-neutron star, faster than which the rotational velocity of the proto-neutron star decreases due to centrifugal support. This non-monotonic behavior of post-collapse core rotation suggests that the progenitor of the most rapidly rotating proto-neutron star is not the most rapidly rotating iron core, but that those iron cores with nearly the critical initial rotation rate may produce the maximum proto-neutron star rotation, the strongest magnetic fields, and the most robust supernova explosions. Even small rotation may induce non-axisymmetric instabilities, which drive magneto-acoustic flux in to the mantle, transporting enegy out of the proto-neutron star to the region near the stalled shock. Further implications for rotation and magnetic fields, pulsars and magnetars, and jet formation mechanisms are discussed. / text
7

On Fermi-like neutrino acceleration in core-collapsesupernovae and around black hole formation, andthe evolution of observable neutrino flux duringproto-neutron star collapse

Gullin, Samuel January 2021 (has links)
Failed supernovae are the implosive final fates of massive stars, where ablack hole is formed. During the collapse, the proto-neutron star emits a huge number of neutrinos, and when the black hole is finally formed, it engulfs theneutrino-emitting material and the signal is cut off. Inspired by the recent work of Nagakura &amp; Hotokezaka (2020), this thesis improves on some parts of theirs imulation work and further explores the neutrino signal from failed supernovae, using a supercomputer to perform Monte Carlo simulations. In particular, we realized the neutrino flux’ time evolution around black hole formation hasn’t previously been studied well, and so it is investigated here, as well as the plausibility of measuring the black hole mass through the shape of the decay. A new component of the signal is presented, an echo of neutrinos emitted before black hole formation that, due to scattering in supersonic material around the black hole, arrive with a time delay of up to 15 ms, and with a significantly higher average energy, for heavy lepton neutrinos around 50 MeV.
8

The Role of the Equation of State in Core-Collapse Supernovae, Neutron Stars and their mergers

Lalit, Sudhanva S. 23 September 2019 (has links)
No description available.
9

Many-body Problems in the Theory of Stellar Collapse and Neutron Stars / Mångkropparsproblem inom teorin för neutronstjärnor och supernovaexplosioner

Olsson, Emma January 2004 (has links)
<p>When modelling the collapse of massive stars leading to supernova explosions and the cooling of neutron stars, understanding the microphysical processes, such as the interaction of neutrinos within a dense medium are of vital importance. The interaction of neutrinos with nucleons (neutrons and protons) is altered by the presence of the medium, compared to the same process with free nucleons. Neutrino scattering and production processes may be characterized in terms of the excitations that are created or destroyed in the nuclear medium. One way to analyse the effects of the medium is by using Landau's theory of normal Fermi liquids. This theory gives simple relationships between physical quantities such as the spin susceptibility or the response to a weak interaction probe in terms of Landau parameters, that are measures of the interaction between quasiparticles. One problem when using Landau Fermi liquid theory for nucleon matter is that the interaction has a tensor component. The tensor interaction does not conserve the total spin and, as a consequence, there are generally contributions to long-wavelength response functions from states that have more than one quasiparticle-quasihole pair in the intermediate state. Such contributions cannot be calculated in terms of Landau parameters alone, since in the usual formulation of Landau theory, only singlepair excitations are considered. In this thesis three problems are addressed. First, we obtain bounds on the contributions from more than one quasiparticle-quasihole pair by using sum-rule arguments. Second, we derive expressions for static response functions allowing for the tensor components of the interaction. We analyse which the most important effects are on the static response of nucleon matter, and find that the major contributions comes from renormalization of coupling constants and transitions to states with more than one quasiparticle-quasihole pair. Third, we show how contributions to the dynamical response coming from states containing two quasiparticle-quasihole pairs may be evaluated in terms of Landau theory if one allows for the effect of collisions in the Landau kinetic equation. We consider the case of asymmetric nuclear matter, and our work goes beyond earlier works in that they contain the effects of collisions in addition to those of the mean field.</p>
10

Many-body Problems in the Theory of Stellar Collapse and Neutron Stars / Mångkropparsproblem inom teorin för neutronstjärnor och supernovaexplosioner

Olsson, Emma January 2004 (has links)
When modelling the collapse of massive stars leading to supernova explosions and the cooling of neutron stars, understanding the microphysical processes, such as the interaction of neutrinos within a dense medium are of vital importance. The interaction of neutrinos with nucleons (neutrons and protons) is altered by the presence of the medium, compared to the same process with free nucleons. Neutrino scattering and production processes may be characterized in terms of the excitations that are created or destroyed in the nuclear medium. One way to analyse the effects of the medium is by using Landau's theory of normal Fermi liquids. This theory gives simple relationships between physical quantities such as the spin susceptibility or the response to a weak interaction probe in terms of Landau parameters, that are measures of the interaction between quasiparticles. One problem when using Landau Fermi liquid theory for nucleon matter is that the interaction has a tensor component. The tensor interaction does not conserve the total spin and, as a consequence, there are generally contributions to long-wavelength response functions from states that have more than one quasiparticle-quasihole pair in the intermediate state. Such contributions cannot be calculated in terms of Landau parameters alone, since in the usual formulation of Landau theory, only singlepair excitations are considered. In this thesis three problems are addressed. First, we obtain bounds on the contributions from more than one quasiparticle-quasihole pair by using sum-rule arguments. Second, we derive expressions for static response functions allowing for the tensor components of the interaction. We analyse which the most important effects are on the static response of nucleon matter, and find that the major contributions comes from renormalization of coupling constants and transitions to states with more than one quasiparticle-quasihole pair. Third, we show how contributions to the dynamical response coming from states containing two quasiparticle-quasihole pairs may be evaluated in terms of Landau theory if one allows for the effect of collisions in the Landau kinetic equation. We consider the case of asymmetric nuclear matter, and our work goes beyond earlier works in that they contain the effects of collisions in addition to those of the mean field.

Page generated in 0.287 seconds