• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 21
  • 21
  • 21
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Surfactant Directed Encapsulation of Metal Nanocrystals in Metal-Organic Frameworks

Hu, Pan January 2015 (has links)
Thesis advisor: Dunwei Wang / Metal nanocrystals with size and shape control have great potential in heterogeneous catalysis. Controllable encapsulation of well-defined metal nanoparticles into the novel porous materials results in new multifunctional nanomaterials. The core-shell nanostructure can enhance the selectivity, durability, or reactivity of the catalysts and even provide additional functionalities. Metal-organic frameworks (MOFs) are a class of novel crystalline nanoporous materials, with well-defined pore structures and distinctive chemical properties. Using MOFs as the encapsulating porous materials has drawn great interest recently due to their tunable structures and properties. However, it could be challenging to grow another porous material layer on metal surface due to the unfavorable interfacial energy. In this work we develop a new concept of colloidal synthesis to synthesize the metal@MOF core-shell nanostructures, in which a layer of self-assembled molecules directed the growth and alignment between two materials. Surfactant cetyltrimethylammonium bromide (CTAB) is designated to facilitate the overgrowth of MOF onto metal surface, and an alignment between the {100} planes of the metal and {110} planes of the MOF can be observed. By utilizing the same concept, a third layer of mesoporous silica could also be coated on the MOF shell with assistance of CTAB. And our method could be a general strategy to fabricate multiple-layer MOF materials. / Thesis (MS) — Boston College, 2015. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
2

Biocompatible plasmonic nanostructures for bio-imaging applications and novel functional plasmonic materials

Zhang, Ran 03 July 2018 (has links)
Our work addresses a novel biocompatible plasmon-enhanced nanostructure approach based on the combination of metal nanoparticles, light emitting polymer-based nanostructures, and scalable cellulose nanofiber templates via a one-step facile electrospinning process that can easily be applied to biomedical devices. In collaboration with the Team of Prof. Lee Goldstein in the Boston University medical campus, we demonstrated light emission from small-size (below 200nm) polymer nanoparticles coupled to plasmonic nanoparticles and to light-emitting biocompatible molecules. In order to fully demonstrate the potential of our novel plasmonic nanostructures we developed Magnetic resonance imaging (MRI) reagent doped Polycaprolactone (Core)-Polyethylene glycol (shell) core-shell nanoparticles and studied their size distribution and dispersion properties in a phosphate buffered saline solution. Our materials were optimized in order to obtain no aggregation of the nanoparticles in solution. The presence of MRI reagent in nanoparticles were demonstrated via Inversion Recovery Sequences (IR) by characterizing the different T1 relaxation times. The concentration of Gd in the nanoparticles dispersion was estimated with different dilution of Gd commercial reagent as a reference. In addition, we combined facile electrospinning fabrication with top down nano-deposition and demonstrated a novel and scalable plasmonic resonant medium for rapid and reliable Raman scattering sensing of molecular monolayers and bacteria. Specifically, aided by PCA multivariate data analysis techniques, we demonstrated fingerprinting Surface Enhanced Raman Scattering (SERS) spectra of different bacteria strains (E. Coli K12, E. coli BL21 (DE3) and E. coli DH 5α) entrapped in our novel plasmonic networks. Finally, in this thesis we have also addressed the development of novel, Si-compatible and largely tunable plasmonic materials for biosensing applications in the mid-infrared spectral range and developed a novel type of transparent conductive oxide based on the Indium Silicon Oxide (ISO) material (Indium Silicon Oxide) that features enhanced surface smoothness and thermal stability compared to Indium tin oxide (ITO) and Titanium nitride (TiN) alternative plasmonic materials. In collaboration with our collaborators at Columbia University, we demonstrated the tunability of near-field plasmonic resonances from 1.8 to 5.0 μm as a function of different annealing temperature. This work provides an enabling first-step towards the development of novel Si-compatible materials with tunable plasmon resonances for metamaterials and sensing devices that operate across the infrared spectrum. / 2019-07-02T00:00:00Z
3

Synthesis and Investigation of Nanomaterials by Homogeneous Nonaqueous Solution Phase Reactions

Ban, Zhihui 10 August 2005 (has links)
The objective of this Ph.D. study is to explore an important and fertile research topic on the methods for synthesis of nanomaterials by homogeneous nonaqueous solution phase reaction. Research in this work focuses on synthesizing several kinds of nanomaterials in different environments and structure, including spherical nanoparticles, nanowires and core-shell structure composites We first synthesized metallic nanomaterials in this system, such as ~10 nm Fe nanoparticles, ~6 nm Au nanoparticles, and ~100 nm Bi nanoparticles, this system are the preparation for the following studies. Secondly, we synthesized bimetallic nanomaterials in this system, such as Fe50Co50 alloy and Bi doped with Mn. For FeCo alloy, after annealing at 500 °C, a pure phase of Fe50Co50 was obtained. And we first synthesized the nanowires of bismuth doped with manganese. By studying intermediates at different temperatures during the growth process of nanowires, the evolution of the crystallization of metallic products and the mechanism of the formation of the nanowires are investigated. Thirdly, we synthesized core-shell structure nanocomposites, including either gold as the shell or polymer as the shell. Au-coated magnetic Fe nanoparticles have been successfully synthesized by partial replacement reaction in a polar aprotic solvent with about 11 nm core of Fe and about 2.5 nm shell of Au. HRTEM images show clear core-shell structure with different crystal lattices from Fe and Au. SQUID magnetometry reveals that particle magnetic properties are not significantly affected by the overlayer of a moderately thick Au shell. The Aucoated particles exhibit a surface plasmon resonance peak that red-shifts from 520 to 680 nm. And Poly (Vinyl Pyrolidone) (PVP) coated iron nanoparticles also have been successfully synthesized in a polar aprotic solvent, which shows the welldefined core-shell structures. In this approach, Poly (Vinyl Pyrolidone) (PVP) was employed as the coating polymer directly coated on metallic core (iron) nanoparticles. In this work, a combination of TEM (transmission electron microscopy), EDS (Energy disperse X-ray spectroscopy), XRD (X-ray powder diffractometry), ICP (inductively-coupled plasma spectrometer), TGA (Thermogravimetric analysis), UV-visible absorption spectroscopy, IR (infrared) spectroscopy and SQUID magnetometry (Superconducting Quantum Interference Device) were employed to characterize the morphology, structure, composition and magnetic properties of the products. In summary, this Ph.D. study successfully and systematically synthesized several kinds of nanocomposites in a system. The synthetic procedure is simple, economic and easily scaled-up for further applications. And many techniques were employed to characterize the products.
4

The Effect of Lattice Strain in Electrochemical Oxidations Catalyzed by Au-PdPt Core-shell Octahedral Nanoparticles

Yaguchi, Momo January 2012 (has links)
Thesis advisor: Chia-kuang Frank Tsung / Pt-based alloy and core-shell nanoparticles have been intensively studied to regulate its size and shape. It has known that these nanoparticles show enhanced catalytic activity in various important fields such as heterogeneous catalysis, and electrochemical energy storage including fuel cells and metal-air batteries. Here, we report a facile hydrothermal synthesis of sub-10 nm PdPt alloy and sub-20 nm Au@PdPt core-shell structures. By using a mild reducing agent in aqueous solution, metal precursors are co-reduced. Specific gases are introduced during the synthesis to optimize the reaction conditions. The PdPt alloy and Au@PdPt core-shell nanostructures were characterized and confirmed by TEM, HRTEM, EDS, ICP-OES and XRD. The resulting PdPt and Au@PdPt particles are monodispersed single crystalline and octahedral shape enclosed by (111) facets. The electrocatalytic activity for the oxidation of formic acid was tested. It was found that the catalytic activity toward the formic acid oxidation of Au@PdPt core-shell particles were much higher than those of PdPt alloy particles. In addition, Pt-rich compositions were the most active in both PdPt alloy and Au@PdPt core-shell nanoparticles. Further studies on thinner alloy-shell core-shell nanoparticles reveal that there is a volcano-curve relationship between the lattice strain strength related to alloy-shell thickness and the catalytic performance. It is proposed that there are three key parameters that can determine the catalytic activity: the alloy composition, the presence of the gold core, and the thickness of alloy-shell. / Thesis (MS) — Boston College, 2012. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
5

Structure, processing, and properties of polyacrylpnitrile/carbon nanotube composite films

Guo, Huina 08 January 2007 (has links)
Vapor grown carbon nanofibers (VGCNFs) developed in 1980s are being widely used for reinforcing composites. Carbon nanotubes (CNTs) discovered in early 1990 can be classified as single wall carbon nanotubes (SWNTs), double wall carbon nanotube (DWNTs) and multi wall carbon nanotubes (MWNTs) depending on the number of grapheme layer forming the carbon nanotube. Polyacrylonitrile (PAN), a commercially important polymer is a predominant precursor for carbon fiber. Carbonized and activated PAN/SWNT films can find application as electrochemical supercapacitor electrodes. This study is focused on the structure, processing and properties of polyacrylonitrile/carbon nanotube (CNT) composite films. PAN/SWNT (60/40) composite film have been processed with unique combination of tensile strength, modulus, electrical conductivity, dimensional stability, low density, solvent resistance, and thermal stability. PAN molecular motion above the glass transition temperature (Tg) in the composite film is significantly suppressed, resulting in high PAN/SWNT storage modulus above Tg. The specific modulus of PAN/VGCNF composite films is consistent with the predictions of the Halpin-Tsai equation up to 20% VGCNF loading. The magnitude of modulus and other property enhancement is reduced as the nanofiber loading is increased (up to 40%). Further increase in nanofiber loading (> 40%) in composite results in modulus and tensile strength lower than those of control PAN. Electrical percolation was observed at 3.1 vol% VGCNF loading. PAN/CNT composite films were processed using SWNTs, DWNTs, MWNTs and VGCNFs to study the effect of various nanotubes on the composite properties. PAN/CNT films have been characterized by wide angle X-ray diffraction (WAXD), Raman spectroscopy, and scanning as well as transmission electron microscopy. Films have also been characterized for electrical conductivity, tensile and dynamic mechanical properties. Mechanical property results have been analyzed in terms of the nanotube surface area determined by nitrogen gas adsorption. PAN/CNT composite films and fibers are characterized using solid state 1HNMR spin lattice relaxation time (T1). With the addition of nanotubes, the T1 values for the PAN matrix generally decreased, and the reduction mechanism is discussed. The optical anisotropy of SWNT in PAN/SWNT composites was observed in their polarized infrared spectra and analyzed using the effective medium theory.
6

Processing Effects on Core-Shell Grain Formation in ZrO<sub>2</sub> Modified BaTiO<sub>3</sub> Ceramics

Zhou, Lei 11 October 2001 (has links)
No description available.
7

Nanoparticules dopées terres rares pour l'imagerie médicale et la thérapie / Rare earth doped nanoparticles for medical imaging and therapy

Dhaouadi, Maroua 25 April 2014 (has links)
Ce travail de thèse a été consacré au développement d’un système multicouche constitué de nanoparticules dopées par des ions terres rares (le cœur), entourées d’une première couche cristalline non dopée, permettant de préserver les propriétés optiques du cœur. Une coquille de silice mésoporeuse est ensuite déposée, permettant l’incorporation d’un photosensibilisateur (ZnPc) via les pores de la couche de silice pour une application thérapeutique : la photothérapie dynamique. Différentes matrices ont été étudiées à savoir Y2O3, KY3F10 et NaYF4. Ces matrices ont été codopées Yb3+/Er3+ afin d’obtenir des émissions dans le visible sous l’effet d’une excitation infrarouge (upconversion), le but ultime étant d’exciter le ZnPc in situ. Chacune des matrices a été caractérisée d’un point de vue structural et morphologique dans une première partie, et d’un point de vue spectroscopique dans une deuxième partie. La structure cœur-coquille cristalline renforce l’émission rouge issue du niveau 4F9/2 de l’Er, effet déduit de l’analyse des spectres et de la dynamique de luminescence.La détection de l’oxygène singulet a été réalisée par le protocole de « bleaching » en présence ou pas du ZnPc en évaluant l’intensité de fluorescence de l’ABDA. / This work has been dedicated to the development of a multistep system composed by rare earths doped nanoparticles (core), enclosed by a first undoped crystalline layer (core-shell), serving as protection of the optical properties of the core. Within a shell of mesoporous silica allowing the loading of the photosensitizer (ZnPc) via the pores of the shell of silica for a therapeutic application: the photodynamic therapy. Various lattices were studied namely Y2O3, KY3F10 and NaYF4. These lattices were codoped with Yb3+ and Er3+ ions to obtain emissions in the visible under an infrared excitation (up conversion), the ultimate purpose being to excite in situ ZnPc. Each of these lattices was characterized from a structural and morphological point of view in the first part and, in the second part, spectroscopic studies are developed. The core-shell enhances the red emission stemming from the level 4F9/2 of Er, effect deduced from the analysis of spectra and the dynamics of luminescence. The detection of the singlet oxygen was realized in vitro by the study of the bleaching of ABDA fluorescence. The comparison of the results for nanoparticles loaded with ZnPc and unloaded ones allows demonstrating the generation of singlet oxygen by exciting in the infrared region of the spectra thanks to the efficient upconversion processes occurring in the rare earth doped materials.
8

Croissance de nanofils III-V par épitaxie par jets moléculaires / Realization of III-V semiconductor nanowires by molecular beam epitaxy growth

Le Thuy, Thanh Giang 09 July 2014 (has links)
Ce travail a pour objectif la fabrication, en épitaxie par jets moléculaires, de nanofils coeurcoquilleà base de GaAs et AlGaAs déposés sur des substrats Si(111), en vue de réaliser desréseaux de fils pour de nouvelles cellules solaires, et pour des fils photoniques permettant uneapproche bottom-up d’émetteurs de photons uniques.La première partie de ce travail est une étude systématique des paramètres clés qui contrôlent lacroissance uni-dimensionnelle de fils GaAs élaborés par un mécanisme vapeur-liquide-solideauto-catalysé, à savoir le rapport des flux As/Ga, la température du substrat, et la vitesse decroissance.La seconde partie se concentre sur la croissance et la caractérisation de fils GaAs recouvertsd’une coquille d’alliages AlGaAs (35% Al) afin de s’affranchir des recombinaisons de surface.Ces coquillesde AlGaAs sont fabriquées en conditions riche-As (rapport As/Ga > 10) afin deconsommer les gouttes de catalyseur gallium et de promouvoir une croissance radiale (le taux decroissance maximal axial/radial est égal à 6). Diverses caractérisations optiques sont réalisées àbasse température sur ces ensembles de fils : cathodoluminescence, photoluminescence etspectroscopie résolue en temps. L’intensité de luminescence et la durée de vie des porteursaugmentent fortement avec la présence de la coquille : une épaisseur de 7 nm de cette dernièreest suffisante pour optimiser la passivation des nanofils et supprimer les recombinaisons liéesaux états de surface. Une fine couche extérieure de GaAs est nécessaire pour éviter touteoxydation de la coquille d’alliage AlGaAs.De plus, grâce à des mesures de CL résolues spatialement, les longueurs de diffusion desexcitons dans ces fils ont été obtenues, allant de 0.7 μm à 1.5 μm pour des épaisseurs decoquilles comprises entre 20 et 50 nm. Des valeurs plus petites sont mesurées pour des coquillesplus épaisses, ce qui tend à montrer l’introduction de défauts dans l’alliage qui pourraientlimiter la qualité de l’interface. Le décalage en énergie de l’émission fournit des informationssur la génération de contraintes dans ces fils coeur-coquille et sur le champ piézo-électrique quien découle. / This report focuses on the fabrication of GaAs nanowires and GaAs/AlGaAs core-shellstructures by molecular beam epitaxy, deposited on Si (111) substrates in order to providearrays of wires for innovative solar cells and bottom-up photonic wires for efficient singlephoton emitters.The first part of this work is a systematic study of the key parameters which control the onedimensionalgrowth of bare GaAs NWs with a self-assisted vapor-liquid-solid growth process,namely the As-to-Ga flux ratio, the substrate temperature, and the deposition rate.The second part concentrates on the growth and characterization of GaAs wires covered with ashell of AlGaAs alloy (35 % Al) in order to get rid of the surface recombinations. These shellswere fabricated under As-rich condition with ratio As/Ga >10 in order to consume the Gadropletscompletely and to promote a radial growth. The obtained axial-to-radial growth ratio is6. The optical characterizations on ensemble were carried out at low temperature via thecathodoluminescence (CL), photoluminescence (PL), and time-resolved PL measurements. Theresults show that the lifetime of carriers and luminescence intensity increase significantly withshell coverage. About 7 nm thick shell is enough to optimize the passivation and suppress thesurface state recombination. A thin outer cap of GaAs is required in order to prevent someoxidation of the AlGaAs alloy shell.In addition, the exciton diffusion lengths of these NWs, studied via the spatially resolved CL,are in the range of 0.7 - 1.5 μm for NWs with shell thicknesses between 20 - 50 nm. Thesevalues are smaller for thicker shells due to the defect formation, leading to limit the quality ofcore-shell interface. The shift in optical emission experiments provides the information of thestrain generation of core-shell when we vary the shell thickness. The piezoelectric field wasnoticed in these samples.
9

Vývoj mikrostruktury pokročilých oxidových keramických materiálů při rychlém slinování / The microstructure evaluation of advanced oxide ceramics during fast sintering

Prajzler, Vladimír January 2017 (has links)
The diploma thesis deals with influence of fast pressure-less sintering on the microstructure of advanced ceramic materials, namely -Al2O3 and tetragonal ZrO2 (doped by 3 mol% Y2O3) with particle sizes ranging from 60 nm to 270 nm. Fast and controlled heating rate was enabled by utilization of the special superkanthal furnace with moving sample holder. Defect-free bulk and dense samples were prepared using heating rates in order of 100-200 °C/min. Higher densities reached the samples pressed by higher pressures; the specimens with densities higher than 99 % t.d. were prepared within tens of minutes for alumina as well as for zirconia with very low thermal conductivity. Different behavior was observed only for material TZ-3Y, which exhibited core-shell structure with dense surface and porous centre after sintering at heating rates higher than 10 °C/min. It was shown in this work that such behavior was not primarily caused by the high thermal gradient resulting from high heating rates. Its creation was probably caused by chlorine impurities. The mechanism of desintering of these samples was described and eliminated by calcination of the samples at 1000 °C for 10 hours prior to fast sintering at 1500 °C, so even this material could be fast sintered up to 99.9 % theoretical density.
10

Nanopartículas magnéticas metálicas recobertas com óxido de ferro: intensificação das propriedades magnéticas da nanopartícula e funcionalização para aplicação em biomedicina / Iron oxide-coated metal magnetic nanoparticles: improved magnetic properties and surface functionalization for biomedical applications

Beck Júnior, Watson 28 February 2011 (has links)
A utilização de nanopartículas (NP) magnéticas em várias áreas da biomedicina e biotecnologia vem recebendo elevado destaque nos últimos anos, graças à versatilidade de aplicações tais como: reparo de tecidos, diagnósticos, imagens por ressonância magnética, tratamento contra o câncer, separação celular, transporte controlado de drogas, entre outras. Atualmente, as NP com potencialidade de aplicação em biomedicina baseiam-se principalmente em óxidos magnéticos de ferro, os quais apresentam comportamento superparamagnético a temperatura ambiente e baixa magnetização da ordem de 60 emu g-1. A utilização dos óxidos se baseia em duas razões principais: facilidade e versatilidade de modificação da superfície e funcionalização devido aos grupos hidroxila na superfície das NP e pela baixa toxicidade comparada às NP magnéticas metálicas. Biocompatibilidade e funcionalidade específica são obtidas geralmente pela incorporação de materiais paramagnéticas e/ou diamagnéticos na superfície das NP contribuindo para diminuir ainda mais o baixo valor de magnetização de saturação dos óxidos. Nesse contexto, é necessário o desenvolvimento de novos núcleos magnéticos com elevado valor de magnetização, próximos aos valores observados para ferro metálico (~200 emu g-1). Entretanto, esses valores são observados apenas em NP metálicos com elevada toxicidade. Assim, neste trabalho, NP magnéticas bimetálicas de FePt, CoPt e NiPt recobertas óxido de ferro ou ferritas de Co e Ni foram sintetizadas pelo processo poliol modificado combinado com a metodologia de crescimento mediado por semente. As NP obtidas apresentaram tamanho e distribuição de tamanho compatíveis para aplicações biomédicas e a magnetização de saturação dos diferentes sistemas foi intensificada quando comparada às de NP de óxidos magnético puros. Os surfactantes ácido oleico e oleilamina presentes na superfície das NP como sintetizadas foram substituídos por moléculas de APTMS (3-aminopropiltrimetoxisilano) resultando em sistemas de NP dispersáveis em água. Adicionalmente, moléculas de carboximetil-dextrana foram conjugadas com as moléculas de APTMS modificando a superfície das NP e levando a formação de sistemas de NP magnéticas biocompatíveis, com estabilidade em dispersões aquosa e resposta magnética melhorada. As NP sintetizadas apresentam, em resumo, grande potencialidade para diversas aplicações em biomedicina. / In recent years, the magnetic nanoparticles uses in many biomedical and biotechnological areas have received great attention due to their applications possibilities such as: tissue repair, diagnostics, magnetic resonance imaging, cancer treatment, cell separation, and controlled drug delivery, among others. Today, the magnetic nanoparticles applications are mainly based on magnetic iron oxides, which exhibit superparamagnetic behavior at room temperature and low saturation magnetization around 60 emu g-1. Magnetic oxide uses was based in two main reasons: easily and versatility of surface changes and functionalization due to hydroxyl groups present on the oxide nanoparticles surface, and low toxicity compared with the magnetic metallic nanoparticles. Biocompatibility and targetable functionalizations are generally obtained by paramagnetic and/or diamagnetic materials incorporations onto the nanoparticle surface contributing to decreases the already low oxide saturation magnetization. In this context, the development of new magnetic nuclei with high magnetizations values closed to the metallic iron values (~200 emu g-1) is required. However, this value is only generally observed in highly toxic metallic nanoparticles. Therefore, in this study, bimetallic magnetic nanoparticles of FePt, CoPt and NiPt coated with iron oxide and Ni- or Co-ferrites in a core-shell structure are synthesized by using the modified polyol process combined with the seed-mediated growth method. Obtained nanoparticles presented size and size distribution compatible for biomedical applications and the saturation magnetization of the different synthesized systems were enhanced compared with the pure magnetic oxide nanoparticles. Oleic acid and oleylamine present on the as-synthesized magnetic nanoparticles surface were properly changed by (3-aminopropyl)trimethoxysilane (APTMS) molecules leading to water-dispersible magnetic nanoparticles system. In addition, carboxymethyl-dextran molecules were conjugated with the APTMS molecules changing the nanoparticles surfaces and resulting in biocompatible water-soluble magnetic nanoparticles systems with improved magnetic response. These synthesized biocompatible magnetic systems present a great potential for many biomedical applications.

Page generated in 0.0536 seconds