• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Charge Transport Properties of Metal / Metal-Phthalocyanine / n-Si Structures / Ladungstransporteigenschaften von Metall / Metall-Phthalocyanine / n-Si Strukturen

Hussain, Afzal 20 December 2010 (has links) (PDF)
The field of hybrid electronics of molecules and traditional semiconductors is deemed to be a realistic route towards possible use of molecular electronics. Such hybrid electronics finds its potential technological applications in nuclear detectors, near-infrared detectors, organic thin film transistors and gas sensors. Specifically Metal / organic / n-Silicon structures in this regard are mostly reported to have two regimes of charge transport at lower and higher applied voltages in such two terminal devices. The fact is mostly attributed to the change in conduction mechanism while moving from lower to higher applied voltages. These reports describe interactions between the semiconductors and molecules in terms of both transport and electrostatics but finding the exact potential distribution between the two components still require numerical calculations. The challenge in this regard is to give the exact relations and the transport models, towards practical quantification of charge transport properties of metal / organic / inorganic semiconductor devices. Some of the most exiting questions in this regard are; whether the existing models are sufficient to describe the device performances of the hybrid devices or some new models are needed? What type of charge carriers are responsible for conduction at lower and higher applied voltages? What is the source of such charge carriers in the sandwiched organic layer between the metal and inorganic semiconductors? How the transition applied voltage for the change in conduction mechanism is determined? What is the role of dopants in the organic layer semiconductors? What are the possible explanations for observed temperature effects in such devices? In present work the charge transport properties of metal / metal-phthalocyanine / n-Si structures with low (ND = 4×1014 cm-3), medium (ND = 1×1016 cm-3) and high (ND = 2×1019 cm-3) doped n-Si as injecting electrode and the effect of air exposure of the vacuum evaporated metal-phthalocyanine film in these structures is investigated. The results obtained through temperature dependent electrical characterizations of the structures suggest that in terms of dominant conduction mechanism in these devices Schottky-type conduction mechanism dominates the charge transport in low-bias region of these devices up to 0.8 V, 0.302 V and 0.15 V in case of low, medium and high doped n-Silicon devices. For higher voltages, in each case of devices, the space-charge-limited conduction, controlled by exponential trap distribution, is found to dominate the charge transport properties of the devices. The interface density of states at the CuPc / n-Si interface of the devices are found to be lower in case of lower work function difference at the CuPc / n-Si interface of the devices. The results also suggest that the work function difference at the CuPc / n-Si interface of these devices causes charge transfer at the interface and these phenomena results in formation of interface dipole. The width of the Schottky depletion region at the CuPc / n-Si interface of these devices is found to be higher with higher work function difference at the interface. The investigation of charge transport properties of Al / ZnPc / medium n-Si and Au / ZnPc / medium n-Si devices suggest that the Schottky depletion region formed at the ZnPc / n-Si interface of these devices determines the charge transport in the low-bias region of both the devices. Therefore, the Schottky-type (injection limited) and the space-charge-limited (bulk limited) conduction are observed in the low and the high bias regions of these devices, respectively. The determined width of the Schottky depletion region at the ZnPc / n-Si interface of these devices is found to be similar for both the devices, therefore, the higher work function difference at the metal / ZnPc interface of the devices has no influence on the Schottky depletion region formed at the ZnPc / n-Si interface of the devices. The similar diode ideality factor, barrier height and the width of the Schottky depletion region, determined for both of these devices, demonstrates that these device characteristics originate from ZnPc / n-Si interface of these devices. Therefore, the work function difference at the metal / ZnPc interface of these devices has no noticeable influence on the device properties originating from ZnPc / n-Si interface in these devices. The investigation of charge transport properties of Al / CuPc / low n-Si devices with and without air exposure of the CuPc film, before depositing metal contact demonstrate that Schottky-type conduction mechanism dominates the charge transport in these devices up to bias of 0.45 V in case devices with the air exposure, and up to 0.8 V in case devices without the air exposure. This decrease in the threshold voltage, for the change in conduction mechanism in the devices, is attributed to wider Schottky depletion width determined at the CuPc / n-Si interface of the devices without the air exposure of CuPc film. For higher voltage the space-charge-limited conduction controlled by exponential trap distribution, is found to dominate the charge transport properties of the devices without the air exposure of CuPc, and in case of devices with the air exposure of CuPc film, the SCLC is controlled by single dominating trap level probably introduced by oxygen impurities.
2

Charge Transport Properties of Metal / Metal-Phthalocyanine / n-Si Structures

Hussain, Afzal 16 December 2010 (has links)
The field of hybrid electronics of molecules and traditional semiconductors is deemed to be a realistic route towards possible use of molecular electronics. Such hybrid electronics finds its potential technological applications in nuclear detectors, near-infrared detectors, organic thin film transistors and gas sensors. Specifically Metal / organic / n-Silicon structures in this regard are mostly reported to have two regimes of charge transport at lower and higher applied voltages in such two terminal devices. The fact is mostly attributed to the change in conduction mechanism while moving from lower to higher applied voltages. These reports describe interactions between the semiconductors and molecules in terms of both transport and electrostatics but finding the exact potential distribution between the two components still require numerical calculations. The challenge in this regard is to give the exact relations and the transport models, towards practical quantification of charge transport properties of metal / organic / inorganic semiconductor devices. Some of the most exiting questions in this regard are; whether the existing models are sufficient to describe the device performances of the hybrid devices or some new models are needed? What type of charge carriers are responsible for conduction at lower and higher applied voltages? What is the source of such charge carriers in the sandwiched organic layer between the metal and inorganic semiconductors? How the transition applied voltage for the change in conduction mechanism is determined? What is the role of dopants in the organic layer semiconductors? What are the possible explanations for observed temperature effects in such devices? In present work the charge transport properties of metal / metal-phthalocyanine / n-Si structures with low (ND = 4×1014 cm-3), medium (ND = 1×1016 cm-3) and high (ND = 2×1019 cm-3) doped n-Si as injecting electrode and the effect of air exposure of the vacuum evaporated metal-phthalocyanine film in these structures is investigated. The results obtained through temperature dependent electrical characterizations of the structures suggest that in terms of dominant conduction mechanism in these devices Schottky-type conduction mechanism dominates the charge transport in low-bias region of these devices up to 0.8 V, 0.302 V and 0.15 V in case of low, medium and high doped n-Silicon devices. For higher voltages, in each case of devices, the space-charge-limited conduction, controlled by exponential trap distribution, is found to dominate the charge transport properties of the devices. The interface density of states at the CuPc / n-Si interface of the devices are found to be lower in case of lower work function difference at the CuPc / n-Si interface of the devices. The results also suggest that the work function difference at the CuPc / n-Si interface of these devices causes charge transfer at the interface and these phenomena results in formation of interface dipole. The width of the Schottky depletion region at the CuPc / n-Si interface of these devices is found to be higher with higher work function difference at the interface. The investigation of charge transport properties of Al / ZnPc / medium n-Si and Au / ZnPc / medium n-Si devices suggest that the Schottky depletion region formed at the ZnPc / n-Si interface of these devices determines the charge transport in the low-bias region of both the devices. Therefore, the Schottky-type (injection limited) and the space-charge-limited (bulk limited) conduction are observed in the low and the high bias regions of these devices, respectively. The determined width of the Schottky depletion region at the ZnPc / n-Si interface of these devices is found to be similar for both the devices, therefore, the higher work function difference at the metal / ZnPc interface of the devices has no influence on the Schottky depletion region formed at the ZnPc / n-Si interface of the devices. The similar diode ideality factor, barrier height and the width of the Schottky depletion region, determined for both of these devices, demonstrates that these device characteristics originate from ZnPc / n-Si interface of these devices. Therefore, the work function difference at the metal / ZnPc interface of these devices has no noticeable influence on the device properties originating from ZnPc / n-Si interface in these devices. The investigation of charge transport properties of Al / CuPc / low n-Si devices with and without air exposure of the CuPc film, before depositing metal contact demonstrate that Schottky-type conduction mechanism dominates the charge transport in these devices up to bias of 0.45 V in case devices with the air exposure, and up to 0.8 V in case devices without the air exposure. This decrease in the threshold voltage, for the change in conduction mechanism in the devices, is attributed to wider Schottky depletion width determined at the CuPc / n-Si interface of the devices without the air exposure of CuPc film. For higher voltage the space-charge-limited conduction controlled by exponential trap distribution, is found to dominate the charge transport properties of the devices without the air exposure of CuPc, and in case of devices with the air exposure of CuPc film, the SCLC is controlled by single dominating trap level probably introduced by oxygen impurities.:1 INTRODUCTION 3 1.1 Organic / Inorganic Semiconductor Interfaces 5 1.2 Organic / Metal Interfaces 6 1.3 Organic Material / Semiconductor Interfaces 6 1.4 Interface Dipoles at Organic / Inorganic Interfaces 7 1.5 Objectives of the Study 9 1.6 Research Methodology 10 1.7 References 12 2 BASIC CONCEPTS OF ORGANIC ELECTRONICS 16 2.1 Localized and Delocalized Orbital in Organic Semiconductors 16 2.2 Operating principle of some basic organic / inorganic devices 19 2.3 Electronic Structure of an Organic Solid 20 2.4 Validity Limits of band model and the tunneling model 21 2.5 Dark Electric Conduction 23 2.6 Injection of Carriers from Electrodes 24 2.7 References 26 3 MATERIALS AND DEVICE FABRICATION 27 3.1 Assembly of the hybrid organic / inorganic structures 27 3.2 The Vacuum Systems for Device Fabrication 27 3.3 The n-Si substrates 29 3.4 The Organic semiconductors; CuPc and ZnPc 30 3.5 Sample Fabrication Procedures 32 3.5.1 Experimental Details of Samples Prepared at PCRET labs 32 3.5.2 Experimental details of samples Prepared at TU Chemnitz labs 33 3.6 References 34 4 METHODS FOR DATA ANALYSIS 35 4.1 The Dominant Conduction Mechanisms in the Devices 35 4.1.1 Schottky-type Conduction 35 4.1.1.1 The Standard Characterization Technique 38 4.1.1.2 The R. J. Bennett Technique 39 4.1.1.3 The Cheung and Cheung Technique 42 4.1.1.4 The H. Norde Technique 42 4.1.2 Space Charge Limited Conduction (SCLC) 43 4.1.3 The MIM Models to Determine Dominant Conduction Mechanism 44 4.2 Interface State Energy Distribution 46 4.3 References 48 5 CHARGE TRANSPORT PROPERTIES OF Al / CuPc / n-Si DEVICES IN DARK 50 5.1 Charge Transport Properties of Al / CuPc / low-doped n-Si Devices 51 5.1.1 Interface State Energy Distribution 65 5.2 Charge Transport Properties of Al / CuPc / medium-doped n-Si Devices 67 5.3 Charge Transport Properties of Al / CuPc / High-doped n-Si Devices 75 5.3.1 Charge Transport Properties of Al / CuPc / High-doped n-Si Devices as Metal-Insulator-Metal Structures 82 5.4 Summary 85 5.5 Final Remarks 87 5.6 References 88 6 INFLUENCE OF TOP METAL CONTACT ON CHARGE TRANSPORT PROPERTIES META / ZnPc / n-Si DEVICES IN DARK 89 6.1 Charge Transport Properties of Metal / ZnPc / Medium-doped n-Si Devices 89 6.2 Interface State Energy Distribution 99 6.3 Summary 100 6.4 Final Remarks 101 6.5 References 103 7 INFLUENCE AIR EXPOSURE ON THE CHARGE TRANSPORT PROPERTIES OF Al / CuPc / n-Si DEVICES 104 7.1 Charge Transport Properties of Al / CuPc / low n-Si Devices With (or) without air exposure of CuPc film 104 7.2 Summary 115 7.3 Final Remarks 116 7.4 References 117 8 CONCLUSIONS 118 8.1 Scope of Future Work 120 Index of Figures 121 Curriculum Vitae and List of Publications 125
3

Herstellung und Charakterisierung von organischen Schichtsystemen

Lehmann, Daniel 30 November 2005 (has links) (PDF)
Im Rahmen dieser Diplomarbeit wurde eine Ultrahochvakuumanlage für organische Molekularstrahldeposition (OMBD) konzipiert und gefertigt, die das Aufwachsen von einzelnen organischen Schichten bis hin zu komplexen Schichtsystemen auf geeigneten Substraten erlaubt. Mit einem ebenfalls konzipierten und gefertigten Probenhalter, sind elektrische Messungen in situ möglich. Für weitere Charakterisierungsmethoden, wie der spektroskopischen Ellipsometrie und der Reflexions-Anisotropie-Spektroskopie sind ebenfalls Optionen für in-situ-Messungen an der UHV-Anlage vorgesehen. Mit dieser Anlage wurden einzelne organische Schichten von Zinkphthalocyanin (ZnPc), Fulleren C60 und Bathocuproin (BCP) hergestellt, die anschließend mit spektroskopischer Ellipsometrie ex situ untersucht wurden. Mit der Herstellung organischer Solarzellen, auf Basis der zuvor hergestellten organischen Einzelschichten, konnte gezeigt werden, dass mit der UHV-Anlage komplexe organische Schichtsysteme erzeugt werden können, an denen in-situ-elektrische Messungen durchführbar sind. / Within the scope of this diploma thesis, a ultra high vacuum chamber for organic molecular beam deposition (OMBD) was designed and built, which allows the growth of single organic layers and complex composit layer structures. With an also designed and built sample holder, it is possible to make in situ electrical measurements. Single organic layers of zinc-phthalocyanine (ZnPc), fullerene C60 and bathocuproine (BCP) were deposited inside this chamber and characterized ex situ by spectroscopic ellipsometry. The preparation of an organic photovoltaic (OPV) cell based on the before characterized single layers, demonstrates that it is possible to deposit complex layer structures and characterize them electrical in situ.
4

Nanoparticules dopées terres rares pour l'imagerie médicale et la thérapie / Rare earth doped nanoparticles for medical imaging and therapy

Dhaouadi, Maroua 25 April 2014 (has links)
Ce travail de thèse a été consacré au développement d’un système multicouche constitué de nanoparticules dopées par des ions terres rares (le cœur), entourées d’une première couche cristalline non dopée, permettant de préserver les propriétés optiques du cœur. Une coquille de silice mésoporeuse est ensuite déposée, permettant l’incorporation d’un photosensibilisateur (ZnPc) via les pores de la couche de silice pour une application thérapeutique : la photothérapie dynamique. Différentes matrices ont été étudiées à savoir Y2O3, KY3F10 et NaYF4. Ces matrices ont été codopées Yb3+/Er3+ afin d’obtenir des émissions dans le visible sous l’effet d’une excitation infrarouge (upconversion), le but ultime étant d’exciter le ZnPc in situ. Chacune des matrices a été caractérisée d’un point de vue structural et morphologique dans une première partie, et d’un point de vue spectroscopique dans une deuxième partie. La structure cœur-coquille cristalline renforce l’émission rouge issue du niveau 4F9/2 de l’Er, effet déduit de l’analyse des spectres et de la dynamique de luminescence.La détection de l’oxygène singulet a été réalisée par le protocole de « bleaching » en présence ou pas du ZnPc en évaluant l’intensité de fluorescence de l’ABDA. / This work has been dedicated to the development of a multistep system composed by rare earths doped nanoparticles (core), enclosed by a first undoped crystalline layer (core-shell), serving as protection of the optical properties of the core. Within a shell of mesoporous silica allowing the loading of the photosensitizer (ZnPc) via the pores of the shell of silica for a therapeutic application: the photodynamic therapy. Various lattices were studied namely Y2O3, KY3F10 and NaYF4. These lattices were codoped with Yb3+ and Er3+ ions to obtain emissions in the visible under an infrared excitation (up conversion), the ultimate purpose being to excite in situ ZnPc. Each of these lattices was characterized from a structural and morphological point of view in the first part and, in the second part, spectroscopic studies are developed. The core-shell enhances the red emission stemming from the level 4F9/2 of Er, effect deduced from the analysis of spectra and the dynamics of luminescence. The detection of the singlet oxygen was realized in vitro by the study of the bleaching of ABDA fluorescence. The comparison of the results for nanoparticles loaded with ZnPc and unloaded ones allows demonstrating the generation of singlet oxygen by exciting in the infrared region of the spectra thanks to the efficient upconversion processes occurring in the rare earth doped materials.
5

Herstellung und Charakterisierung von organischen Schichtsystemen

Lehmann, Daniel 29 September 2005 (has links)
Im Rahmen dieser Diplomarbeit wurde eine Ultrahochvakuumanlage für organische Molekularstrahldeposition (OMBD) konzipiert und gefertigt, die das Aufwachsen von einzelnen organischen Schichten bis hin zu komplexen Schichtsystemen auf geeigneten Substraten erlaubt. Mit einem ebenfalls konzipierten und gefertigten Probenhalter, sind elektrische Messungen in situ möglich. Für weitere Charakterisierungsmethoden, wie der spektroskopischen Ellipsometrie und der Reflexions-Anisotropie-Spektroskopie sind ebenfalls Optionen für in-situ-Messungen an der UHV-Anlage vorgesehen. Mit dieser Anlage wurden einzelne organische Schichten von Zinkphthalocyanin (ZnPc), Fulleren C60 und Bathocuproin (BCP) hergestellt, die anschließend mit spektroskopischer Ellipsometrie ex situ untersucht wurden. Mit der Herstellung organischer Solarzellen, auf Basis der zuvor hergestellten organischen Einzelschichten, konnte gezeigt werden, dass mit der UHV-Anlage komplexe organische Schichtsysteme erzeugt werden können, an denen in-situ-elektrische Messungen durchführbar sind. / Within the scope of this diploma thesis, a ultra high vacuum chamber for organic molecular beam deposition (OMBD) was designed and built, which allows the growth of single organic layers and complex composit layer structures. With an also designed and built sample holder, it is possible to make in situ electrical measurements. Single organic layers of zinc-phthalocyanine (ZnPc), fullerene C60 and bathocuproine (BCP) were deposited inside this chamber and characterized ex situ by spectroscopic ellipsometry. The preparation of an organic photovoltaic (OPV) cell based on the before characterized single layers, demonstrates that it is possible to deposit complex layer structures and characterize them electrical in situ.
6

Studies on Organic Solar Cells Composed of Fullerenes and Zinc-Phthalocyanines

Pfützner, Steffen 29 February 2012 (has links) (PDF)
This work deals with the investigation and research on organic solar cells. In the first part of this work we focus on the spectroscopical and electrical characterization of the acceptor molecule and fullerene derivative C70. In combination with the donor molecule zinc-phthalocyanines (ZnPc) we investigate C70 in flat and bulk heterojunction solar cells and compare the results with C60 as acceptor. The stronger and spectral broader thin film absorption of C70 and thus enhanced contribution to photocurrent as well as the similar electrical properties with respect to C60 result in higher power conversion efficiencies. In the second part, modifications of the blend layer morphology of a C60:ZnPc bulk heterojunction solar cell are considered. Using substrate heating during co-deposition of acceptor and donor, the molecular arrangement is influenced. Due to the additional thermal energy at the substrate the blend layer morphology is improved and optimized for a substrate heating temperature of 110°C. With transmission electron microscopy, molecular phase separation of C60 and ZnPc and the formation of polycrystalline ZnPc domains in a lateral dimension on the order of 50 nm are detected. Mobility measurements show an increased ZnPc hole mobility in the heated blend layer. The improved charge carrier percolation and transport are confirmed by the enhanced performance of such bulk heterojunction solar cells. Furthermore, we show a strong influence of the pre-deposited p-doped hole transport layer on the molecular phase separation. In the third part, we study the dependency of the open circuit voltage on the mixing ratio of C60 and ZnPc in bulk heterojunction solar cells. For the different mixing ratios we determine the ionization potentials of C60 and ZnPc. Over the various C60:ZnPc blends from 1:3 - 6:1, the ionization potentials change linearly, but different from each other and exhibit a correlation to the change in open circuit voltage. Depending on the mixing ratio an intrinsic ZnPc layer adjacent to the blend leads to injection barriers which result in reduced open circuit voltage. We hence determine a voltage loss dependent on ZnPc layer thickness and barrier height. / Diese Arbeit beschäftigt sich mit der Untersuchung und Forschung an organischen Solarzellen und gliedert sich in drei Teile. Im ersten Teil wird auf die spektroskopische und elektrische Charakerisierung des Fullerenderivates C70 eingegangen, welches als Akzeptormolekül in Kombination mit dem Donormolekül Zink-Phthalocyanin (ZnPc) in Flach- und Mischschichtheteroübergänge organischer Solarzellen Anwendung findet. Dabei wird das Molekül mit dem bisherigen Standard Akzeptormolekül C60 verglichen. Die deutlich stärkere und spektral verbreiterte Dünnschichtabsorption von C70, sowie die vergleichbaren elektrischen Eigenschaften zu C60 führen zu einer Effizienzsteigerung in den Flach- und Mischschichtsolarzellen, welche maßgeblich durch die Erhöhung des Kurzschlussstromes erreicht wird. Im zweiten Teil widmet sich diese Arbeit der Morphologiemodifizierung des Mischschichtsystems C60:ZnPc, welche durch Heizen des Substrates während der Mischverdampfung von Akzeptor- und Donormolekülen in organischen Mischschichtsolarzellen erreicht werden kann. Es wird gezeigt, dass mit der zusätzlichen Zufuhr thermischer Energie über das Substrat die Anordnung der Moleküle in der Mischschicht beeinflusst werden kann. Unter Verwendung eines Transmissionselektronmikroskops lässt sich für die Mischschicht mit der optimalen Solarzellensubstrattemperatur von 110°C eine Phasenseparation von C60 und ZnPc unter Ausbildung von polykristallinen ZnPc Domänen in der lateralen Dimension von 50 nm nachweisen. Mit zusätzlichen Messungen der Ladungsträgerbeweglichkeiten des Mischschichtsystems kann die verbesserte Perkolation und Löcherbeweglichkeit von ZnPc für die Steigerung der Performance geheizter Solarzellen bestätigt werden. Desweiteren wird gezeigt, dass die Ausbildung einer Phasenseparation sehr stark von der darunter liegenden Molekülschicht z.B. der p-dotierte Löchertransportschicht abhängig ist. Im letzten und dritten Teil geht die Arbeit auf die Abhängigkeit der Klemmspannung von der Mischschichtkonzentration von C60 und ZnPc ein. Für die unterschiedlichen Volumenkonzentrationen von C60:ZnPc zwishen 6:1 und 1:6 kann gezeigt werden, dass sich die Ionisationspotentiale von C60 und ZnPc über einen großen Bereich linear und voneinander verschieden verändern und mit den absoluten Änderung der offenenen Klemmspannung korrelieren. Desweiteren wird gezeigt, dass sich durch eine zusätzlich an die Mischschicht angrenzende intrinsische ZnPc Schicht, abhängig von der Mischschichtkonzentration, Injektionsbarrieren ausbilden, welche nachweislich einen Spannungsverlust bedingen. Dabei kann gezeigt werden, dass der Spannungsverlust mit der ZnPc Schichtdicke und der Barrierenhöhe korreliert.
7

Studies on Organic Solar Cells Composed of Fullerenes and Zinc-Phthalocyanines

Pfützner, Steffen 30 January 2012 (has links)
This work deals with the investigation and research on organic solar cells. In the first part of this work we focus on the spectroscopical and electrical characterization of the acceptor molecule and fullerene derivative C70. In combination with the donor molecule zinc-phthalocyanines (ZnPc) we investigate C70 in flat and bulk heterojunction solar cells and compare the results with C60 as acceptor. The stronger and spectral broader thin film absorption of C70 and thus enhanced contribution to photocurrent as well as the similar electrical properties with respect to C60 result in higher power conversion efficiencies. In the second part, modifications of the blend layer morphology of a C60:ZnPc bulk heterojunction solar cell are considered. Using substrate heating during co-deposition of acceptor and donor, the molecular arrangement is influenced. Due to the additional thermal energy at the substrate the blend layer morphology is improved and optimized for a substrate heating temperature of 110°C. With transmission electron microscopy, molecular phase separation of C60 and ZnPc and the formation of polycrystalline ZnPc domains in a lateral dimension on the order of 50 nm are detected. Mobility measurements show an increased ZnPc hole mobility in the heated blend layer. The improved charge carrier percolation and transport are confirmed by the enhanced performance of such bulk heterojunction solar cells. Furthermore, we show a strong influence of the pre-deposited p-doped hole transport layer on the molecular phase separation. In the third part, we study the dependency of the open circuit voltage on the mixing ratio of C60 and ZnPc in bulk heterojunction solar cells. For the different mixing ratios we determine the ionization potentials of C60 and ZnPc. Over the various C60:ZnPc blends from 1:3 - 6:1, the ionization potentials change linearly, but different from each other and exhibit a correlation to the change in open circuit voltage. Depending on the mixing ratio an intrinsic ZnPc layer adjacent to the blend leads to injection barriers which result in reduced open circuit voltage. We hence determine a voltage loss dependent on ZnPc layer thickness and barrier height.:Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 15 2 History, Fundamentals, and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Photovoltaic principle and organic solar cells . . . . . . . . . . . . . . . . . ... . . 42 2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 61 3 Materials & Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63 3.1 Organic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63 3.1.1 Standard photoactive materials . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63 3.1.2 Transport materials and dopants . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . 67 3.1.3 Material purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2 Sample preparation and vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . .. . 70 3.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70 3.2.2 Vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70 3.2.3 Substrates and layer stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 73 3.3 Solar cell characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 77 3.3.1 J(V)-measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.3.2 EQE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.4 Further characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79 3.4.1 UPS and XPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79 3.4.2 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 81 3.4.3 AFM, SEM, TEM, and WAXRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.4.4 Optical Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.5 Simulation and modeling software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.1 Optical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.2 Electrical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 Results: C70 as acceptor molecule for organic solar cells . . . . . . . . . . . . . . 85 4.1 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Mobility measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 88 4.3 Ultraviolet photoelectron spectroscopy . . . . . . . . . . . . . . . . . . . . . . .. . . 89 4.4 p-i-i flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 90 4.4.1 Di-NPD/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . 90 4.4.2 ZnPc/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . 91 4.5 p-i-i bulk heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.5.1 p-i-i mixed C60:C70:ZnPc bulk heterojunction solar cell . . . . . . . . . . . 99 4.6 Outlook: fullerene C84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 101 5 Results: Bulk heterojunction solar cells deposited on heated substrates . 103 5.1 150 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . 103 5.2 60 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . . 107 5.2.1 AFM and SEM measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.2.2 Absorption measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.2.3 X-Ray (WAXRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113 5.2.4 TEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 116 5.2.5 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 119 5.2.6 C70:ZnPc m-i-p bulk-heterojunctions . . . . . . . . . . . . . . . . . . . . . . .. . 121 5.3 p-i-i bulk heterojunction solar cells deposited at 110°C . . . . . . . . . . . . 124 5.3.1 Influence of sublayer on blend layer morphology . . . . . . . . . . . . . . . . 128 6 Results: On the influence of Voc in p-i-i bulk heterojunction solar cells . . 137 6.1 Dependency of Voc on C60:ZnPc mixing ratio . . . . . . . . . . . . . . . . . . . . 137 6.2 Influence of different hole transport layers on C60:ZnPc . . . . . . . . . .. . 140 6.2.1 Red and blue illumination measurements . . . . . . . . . . . . . . . . . . . . . . 143 6.2.2 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.2.3 UPS measurements for different C60:ZnPc mixing ratios . . . . . . . . .. 148 6.3 Influence of thin ZnPc and C70 interlayers on Voc . . . . . . . . . . . . . . .. . 152 6.3.1 UPS measurements of blend/ZnPc interfaces . . . . . . . . . . . . . . . . . . . 155 6.3.2 Blend/ZnPc injection barrier: experiment and simulation . . . . . . . . . . 158 7 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 / Diese Arbeit beschäftigt sich mit der Untersuchung und Forschung an organischen Solarzellen und gliedert sich in drei Teile. Im ersten Teil wird auf die spektroskopische und elektrische Charakerisierung des Fullerenderivates C70 eingegangen, welches als Akzeptormolekül in Kombination mit dem Donormolekül Zink-Phthalocyanin (ZnPc) in Flach- und Mischschichtheteroübergänge organischer Solarzellen Anwendung findet. Dabei wird das Molekül mit dem bisherigen Standard Akzeptormolekül C60 verglichen. Die deutlich stärkere und spektral verbreiterte Dünnschichtabsorption von C70, sowie die vergleichbaren elektrischen Eigenschaften zu C60 führen zu einer Effizienzsteigerung in den Flach- und Mischschichtsolarzellen, welche maßgeblich durch die Erhöhung des Kurzschlussstromes erreicht wird. Im zweiten Teil widmet sich diese Arbeit der Morphologiemodifizierung des Mischschichtsystems C60:ZnPc, welche durch Heizen des Substrates während der Mischverdampfung von Akzeptor- und Donormolekülen in organischen Mischschichtsolarzellen erreicht werden kann. Es wird gezeigt, dass mit der zusätzlichen Zufuhr thermischer Energie über das Substrat die Anordnung der Moleküle in der Mischschicht beeinflusst werden kann. Unter Verwendung eines Transmissionselektronmikroskops lässt sich für die Mischschicht mit der optimalen Solarzellensubstrattemperatur von 110°C eine Phasenseparation von C60 und ZnPc unter Ausbildung von polykristallinen ZnPc Domänen in der lateralen Dimension von 50 nm nachweisen. Mit zusätzlichen Messungen der Ladungsträgerbeweglichkeiten des Mischschichtsystems kann die verbesserte Perkolation und Löcherbeweglichkeit von ZnPc für die Steigerung der Performance geheizter Solarzellen bestätigt werden. Desweiteren wird gezeigt, dass die Ausbildung einer Phasenseparation sehr stark von der darunter liegenden Molekülschicht z.B. der p-dotierte Löchertransportschicht abhängig ist. Im letzten und dritten Teil geht die Arbeit auf die Abhängigkeit der Klemmspannung von der Mischschichtkonzentration von C60 und ZnPc ein. Für die unterschiedlichen Volumenkonzentrationen von C60:ZnPc zwishen 6:1 und 1:6 kann gezeigt werden, dass sich die Ionisationspotentiale von C60 und ZnPc über einen großen Bereich linear und voneinander verschieden verändern und mit den absoluten Änderung der offenenen Klemmspannung korrelieren. Desweiteren wird gezeigt, dass sich durch eine zusätzlich an die Mischschicht angrenzende intrinsische ZnPc Schicht, abhängig von der Mischschichtkonzentration, Injektionsbarrieren ausbilden, welche nachweislich einen Spannungsverlust bedingen. Dabei kann gezeigt werden, dass der Spannungsverlust mit der ZnPc Schichtdicke und der Barrierenhöhe korreliert.:Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 15 2 History, Fundamentals, and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Photovoltaic principle and organic solar cells . . . . . . . . . . . . . . . . . ... . . 42 2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 61 3 Materials & Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63 3.1 Organic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63 3.1.1 Standard photoactive materials . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63 3.1.2 Transport materials and dopants . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . 67 3.1.3 Material purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2 Sample preparation and vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . .. . 70 3.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70 3.2.2 Vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70 3.2.3 Substrates and layer stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 73 3.3 Solar cell characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 77 3.3.1 J(V)-measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.3.2 EQE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.4 Further characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79 3.4.1 UPS and XPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79 3.4.2 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 81 3.4.3 AFM, SEM, TEM, and WAXRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.4.4 Optical Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.5 Simulation and modeling software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.1 Optical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.2 Electrical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 Results: C70 as acceptor molecule for organic solar cells . . . . . . . . . . . . . . 85 4.1 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Mobility measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 88 4.3 Ultraviolet photoelectron spectroscopy . . . . . . . . . . . . . . . . . . . . . . .. . . 89 4.4 p-i-i flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 90 4.4.1 Di-NPD/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . 90 4.4.2 ZnPc/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . 91 4.5 p-i-i bulk heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.5.1 p-i-i mixed C60:C70:ZnPc bulk heterojunction solar cell . . . . . . . . . . . 99 4.6 Outlook: fullerene C84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 101 5 Results: Bulk heterojunction solar cells deposited on heated substrates . 103 5.1 150 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . 103 5.2 60 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . . 107 5.2.1 AFM and SEM measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.2.2 Absorption measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.2.3 X-Ray (WAXRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113 5.2.4 TEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 116 5.2.5 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 119 5.2.6 C70:ZnPc m-i-p bulk-heterojunctions . . . . . . . . . . . . . . . . . . . . . . .. . 121 5.3 p-i-i bulk heterojunction solar cells deposited at 110°C . . . . . . . . . . . . 124 5.3.1 Influence of sublayer on blend layer morphology . . . . . . . . . . . . . . . . 128 6 Results: On the influence of Voc in p-i-i bulk heterojunction solar cells . . 137 6.1 Dependency of Voc on C60:ZnPc mixing ratio . . . . . . . . . . . . . . . . . . . . 137 6.2 Influence of different hole transport layers on C60:ZnPc . . . . . . . . . .. . 140 6.2.1 Red and blue illumination measurements . . . . . . . . . . . . . . . . . . . . . . 143 6.2.2 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.2.3 UPS measurements for different C60:ZnPc mixing ratios . . . . . . . . .. 148 6.3 Influence of thin ZnPc and C70 interlayers on Voc . . . . . . . . . . . . . . .. . 152 6.3.1 UPS measurements of blend/ZnPc interfaces . . . . . . . . . . . . . . . . . . . 155 6.3.2 Blend/ZnPc injection barrier: experiment and simulation . . . . . . . . . . 158 7 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8

Nanoparticules dopées terres rares pour l'imagerie médicale et la thérapie

Dhaouadi, Maroua 25 April 2014 (has links) (PDF)
Ce travail de thèse a été consacré au développement d'un système multicouche constitué de nanoparticules dopées par des ions terres rares (le cœur), entourées d'une première couche cristalline non dopée, permettant de préserver les propriétés optiques du cœur. Une coquille de silice mésoporeuse est ensuite déposée, permettant l'incorporation d'un photosensibilisateur (ZnPc) via les pores de la couche de silice pour une application thérapeutique : la photothérapie dynamique. Différentes matrices ont été étudiées à savoir Y2O3, KY3F10 et NaYF4. Ces matrices ont été codopées Yb3+/Er3+ afin d'obtenir des émissions dans le visible sous l'effet d'une excitation infrarouge (upconversion), le but ultime étant d'exciter le ZnPc in situ. Chacune des matrices a été caractérisée d'un point de vue structural et morphologique dans une première partie, et d'un point de vue spectroscopique dans une deuxième partie. La structure cœur-coquille cristalline renforce l'émission rouge issue du niveau 4F9/2 de l'Er, effet déduit de l'analyse des spectres et de la dynamique de luminescence.La détection de l'oxygène singulet a été réalisée par le protocole de " bleaching " en présence ou pas du ZnPc en évaluant l'intensité de fluorescence de l'ABDA.
9

Electronic and Geometrical Structure of Phthalocyanines on Surfaces : An Electron Spectroscopy and Scanning Tunneling Microscopy Study

Åhlund, John January 2007 (has links)
Core- and Valence Photoelectron Spectroscopy (PES), X-ray- and Ultraviolet-Visible Absorption Spectroscopy (XAS and UV-Vis), Scanning Tunneling Microscopy (STM) and Density Functional Theory (DFT) calculations are used to study the electronic and geometrical structure of a class of macro-cyclic molecules, Phthalocyanines (Pc), on surfaces. These molecules are widely studied due to their application in many different fields. Multilayer and monolayer coverages of Iron Phthalocyanine (FePc) and metal-free Phthalocyanine (H2Pc) deposited on different surfaces are investigated in order to get insight in the electronic and geometrical structure of the obtained overlayers, of crucial importance for the understanding of the film functionality. Sublimation of molecular thick films on Si(100) and on conducting glass results in films with molecules mainly oriented with their molecular plane orthogonal to the surface. Ex-situ deposited H2Pc films on conductive glass show different molecular orientation and morphology with respect to the vacuum sublimated films. We study the monolayer adsorption structure of FePc and H2Pc and compare our results with other Pc’s adsorbed on graphite. We find that the molecular unit cell and the superstructure is characteristic for each Pc adsorbed on graphite, even if the geometrical size of the compared molecules is the same. The PE- and XA- spectra of FePc on graphite are essentially identical for the mono- and multilayer preparations, evidencing weak intermolecular and molecular-substrate interactions of van der Waals nature. Furthermore, we characterize Pc’s on InSb (001)-c(8x2). The substrate In rows are observed to be the adsorption site for Pc’s. We find that the growth of the two-dimensional islands of FePc is prolonged in the [-110] direction, in contrast to ZnPc adsorbed on the same substrate at room temperature. We interpret this result as an indication that the adsorption is controlled by the substrate corrugation observed at 70 K.

Page generated in 0.4954 seconds