• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 17
  • 10
  • Tagged with
  • 106
  • 102
  • 96
  • 88
  • 75
  • 65
  • 63
  • 48
  • 48
  • 48
  • 21
  • 21
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of solar cells by electron holography

Sandino del Busto, John William 06 June 2012 (has links) (PDF)
Photovoltaic energy is the most promising future energy source. Therefore, strong efforts are made to improve their price-to-efficiency ratio. New technologies and materials are being involved in the production, such as poly-crystalline materials rather than mono-crystalline silicon. Some of these materials are based on copperchalcopyrite with advantageous properties like directly tunable band gap, high absorption coefficients, low deposition temperatures, low-cost materials and capability of deposition on suitable materials. However, correlation between the thin film materials characteristics and device performance are not well understood, and increasing the efficiency needs an exhaustive comprehension of the different phenomena involved in their performance, such as role of defects, doping concentrations and potentials, which requires the development of innovative techniques for the characterization. Electron holography in the TEM would be very helpful, because it allows the quantitative reconstruction of the complex object wave. The measurement of phase and amplitude of the wave makes it possible to determine the potential in the object studied. In this manner, electron holography is a powerful tool for materials characterization at nanometre scale because it relates potential distributions with structure. However, artefacts can be introduced in the measurement. Therefore, the procedure of acquisition, reconstruction and correction of artefacts of the electron holograms, fundamental for the interpretation of the results in terms of potential, are in detail presented. Moreover, the object of study exhibits challenges to the technique because of their polycrystalline structure, which introduces dynamic interaction with the electron beam sometimes stronger than the desired one. Consequently it is necessary to have an adequate measurement procedure. To overcome this limitation, a characterization method including in-situ stimuli is proposed and applied to crystalline silicon and CIGS solar cells. For this, a suitable sample preparation procedure with Focused Ion Beam (FIB) milling, and a specially designed sample holder allowing illumination with light and biasing a TEM sample are developed and applied to solar cells. As result of the work, it is shown that expectedly the electron illumination has an important influence. It produces larger generation rates than 1 sun standard illumination. As counterpart, the recombination processes occurring at the surface of the small and thin sample tend to reduce the potential generated by the illumination. As consequence, only the p-n junction potential is usually measured. To produce an appreciable effect by illumination with light, the TEM lamella must be thicker, and the illumination intensity of the light must be strongly increased. This thesis realises the first extensive study of the application of electron holography to the measurement of potentials in solar cells applying in-situ illumination and biasing. The experimental findings were corroborated by simulation calculations. They show that the processes in the objects are essentially correctly understood, however, quantitative interpretation is not yet sufficiently accurate. / Photovoltaik bietet eine vielversprechende Energiequelle der Zukunft. Deshalb werden große Anstrengungen unternommen, um ihr Preis-Nutzen-Verhältnis zu verbessern. Neue Technologien und Materialien, wie poly-kristalline Materialien werden interessanter als mono-kristallines Silizium. Einige dieser Materialien beruhen auf der Basis von Kupfer-Chalkopyrit mit vorteilhaften Eigenschaften, wie direkt einstellbarer Bandlücke, hohen Absorptionskoeffizienten, niedrigen Abscheidetemperaturen und Verwendung von Low-Cost-Materialien. Allerdings ist die Korrelation zwischen den Eigenschaften der Dünnschicht-Materialien und der Leistung der Solarzellen noch nicht ausreichend verstanden, um die Effizienz weiter zu steigern. Hierfür muss ein umfassendes Verständnis der verschiedenen Phänomene wie der Rolle von Defekten, Dotierungskonzentrationen und Potenzialen erreicht werden, die die Entwicklung von innovativen Techniken für die Charakterisierung erfordert. Elektronen-Holographie kann zur Beantwortung dieser Fragen beitragen, weil sie die quantitative Rekonstruktion der komplexen Objektwelle im TEM erlaubt. Die Messung der Phase und der Amplitude der Welle macht es möglich, die Objektpotentiale zu bestimmen. Auf diese Weise wird Elektronen-Holographie ein leistungsfähiges Werkzeug für die Materialcharakterisierung im Nanometerbereich, weil sie Struktur und Potentialverteilung an derselben Stelle bestimmen kann. Doch können Artefakte und Missinterpretationen entstehen. Daher sind Aufzeichnung von Elektronenhologrammen sowie Rekonstruktion und Korrektur der Objektwelle von grundlegender Bedeutung für die Interpretation der Ergebnisse und werden im Detail vorgestellt. Ein spezielles Problem von polykristallinen Materialien ist die Tatsache, dass durch unterschiedlich orientierte Kristallite unterschiedliche Innere Potentiale gemessen werden können. Darüber hinaus besteht die Gefahr, dass die Elektronen mit unterschiedlichen Körnern in unterschiedlicher Weise dynamisch wechselwirken; dies führt zu Phasendifferezen, die erheblich stärker sein können als die eigentlich interessanten Halbleiterpotentiale. Deshalb werden die holographischen Untersuchungen so modifiziert, dass die Objekte in-situ, beispielsweise unter Anlegen elektrischer Spannungen (“biasing”) oder Beleuchtung mit Licht, untersucht werden. Die hierzu nötigen neuen Präparationsverfahren für die Objekte werden entwickelt. Ebenso werden neue in-situ Objekthalter entwickelt, die diese Parameter gezielt zu verändern gestatten. Als Ergebnis der Arbeit wird auch gezeigt, dass die Elektronenbeleuchtung einen wichtigen Einfluss auf die gemessenen Potentialverteilungen hat. Sie produziert größere Generationsraten von Elektronen-Loch-Paaren als 1 sun (Standard-Beleuchtung). Tatsächlich werden durch Rekombinationsprozesse an der Oberfläche der Probe die induzierten Potentiale in der Solarzelle verringert. Als Folge wird in der Regel nur das Potenzial des pn-Übergang gemessen. Um eine spürbare Wirkung durch Bestrahlung mit Licht zu erzeugen, muss die TEM-Lamelle dicker gewählt werden, und die Beleuchtung muss wesentlich intensiver sein als unter normalbedingungen. Diese Dissertation realisiert die erste umfassende Studie über die Anwendung von Elektronen-Holographie für die Messung von Potenzialen in Solarzellen unter Anwendung von Biasing und in-situ-Beleuchtung. Die experimentellen Befunde wurden mit umfangreichen Simulationsrechnungen verglichen. Diese zeigen, dass die Vorgänge im wesentlichen qualitativ verstanden sind, auch wenn sie die gemessenen Potentialverteilungen quantitativ oft noch nicht mit der erwünschten Genauigkeit wiedergeben.
2

Study of solar cells by electron holography

Sandino del Busto, John William 17 April 2012 (has links)
Photovoltaic energy is the most promising future energy source. Therefore, strong efforts are made to improve their price-to-efficiency ratio. New technologies and materials are being involved in the production, such as poly-crystalline materials rather than mono-crystalline silicon. Some of these materials are based on copperchalcopyrite with advantageous properties like directly tunable band gap, high absorption coefficients, low deposition temperatures, low-cost materials and capability of deposition on suitable materials. However, correlation between the thin film materials characteristics and device performance are not well understood, and increasing the efficiency needs an exhaustive comprehension of the different phenomena involved in their performance, such as role of defects, doping concentrations and potentials, which requires the development of innovative techniques for the characterization. Electron holography in the TEM would be very helpful, because it allows the quantitative reconstruction of the complex object wave. The measurement of phase and amplitude of the wave makes it possible to determine the potential in the object studied. In this manner, electron holography is a powerful tool for materials characterization at nanometre scale because it relates potential distributions with structure. However, artefacts can be introduced in the measurement. Therefore, the procedure of acquisition, reconstruction and correction of artefacts of the electron holograms, fundamental for the interpretation of the results in terms of potential, are in detail presented. Moreover, the object of study exhibits challenges to the technique because of their polycrystalline structure, which introduces dynamic interaction with the electron beam sometimes stronger than the desired one. Consequently it is necessary to have an adequate measurement procedure. To overcome this limitation, a characterization method including in-situ stimuli is proposed and applied to crystalline silicon and CIGS solar cells. For this, a suitable sample preparation procedure with Focused Ion Beam (FIB) milling, and a specially designed sample holder allowing illumination with light and biasing a TEM sample are developed and applied to solar cells. As result of the work, it is shown that expectedly the electron illumination has an important influence. It produces larger generation rates than 1 sun standard illumination. As counterpart, the recombination processes occurring at the surface of the small and thin sample tend to reduce the potential generated by the illumination. As consequence, only the p-n junction potential is usually measured. To produce an appreciable effect by illumination with light, the TEM lamella must be thicker, and the illumination intensity of the light must be strongly increased. This thesis realises the first extensive study of the application of electron holography to the measurement of potentials in solar cells applying in-situ illumination and biasing. The experimental findings were corroborated by simulation calculations. They show that the processes in the objects are essentially correctly understood, however, quantitative interpretation is not yet sufficiently accurate.:1. Introduction 2 Basics of Solar Cells 3 Potential measurement by electron holography 4 Application of electron holography on solar cells 5 Design, construction, characterisation and application of a TEM holder for in-situ biasing and illumination 6 TEM sample preparation for in-situ biasing and illumination 7 Measurement of built-in potential under in-situ illumination and bias of solar cells / Photovoltaik bietet eine vielversprechende Energiequelle der Zukunft. Deshalb werden große Anstrengungen unternommen, um ihr Preis-Nutzen-Verhältnis zu verbessern. Neue Technologien und Materialien, wie poly-kristalline Materialien werden interessanter als mono-kristallines Silizium. Einige dieser Materialien beruhen auf der Basis von Kupfer-Chalkopyrit mit vorteilhaften Eigenschaften, wie direkt einstellbarer Bandlücke, hohen Absorptionskoeffizienten, niedrigen Abscheidetemperaturen und Verwendung von Low-Cost-Materialien. Allerdings ist die Korrelation zwischen den Eigenschaften der Dünnschicht-Materialien und der Leistung der Solarzellen noch nicht ausreichend verstanden, um die Effizienz weiter zu steigern. Hierfür muss ein umfassendes Verständnis der verschiedenen Phänomene wie der Rolle von Defekten, Dotierungskonzentrationen und Potenzialen erreicht werden, die die Entwicklung von innovativen Techniken für die Charakterisierung erfordert. Elektronen-Holographie kann zur Beantwortung dieser Fragen beitragen, weil sie die quantitative Rekonstruktion der komplexen Objektwelle im TEM erlaubt. Die Messung der Phase und der Amplitude der Welle macht es möglich, die Objektpotentiale zu bestimmen. Auf diese Weise wird Elektronen-Holographie ein leistungsfähiges Werkzeug für die Materialcharakterisierung im Nanometerbereich, weil sie Struktur und Potentialverteilung an derselben Stelle bestimmen kann. Doch können Artefakte und Missinterpretationen entstehen. Daher sind Aufzeichnung von Elektronenhologrammen sowie Rekonstruktion und Korrektur der Objektwelle von grundlegender Bedeutung für die Interpretation der Ergebnisse und werden im Detail vorgestellt. Ein spezielles Problem von polykristallinen Materialien ist die Tatsache, dass durch unterschiedlich orientierte Kristallite unterschiedliche Innere Potentiale gemessen werden können. Darüber hinaus besteht die Gefahr, dass die Elektronen mit unterschiedlichen Körnern in unterschiedlicher Weise dynamisch wechselwirken; dies führt zu Phasendifferezen, die erheblich stärker sein können als die eigentlich interessanten Halbleiterpotentiale. Deshalb werden die holographischen Untersuchungen so modifiziert, dass die Objekte in-situ, beispielsweise unter Anlegen elektrischer Spannungen (“biasing”) oder Beleuchtung mit Licht, untersucht werden. Die hierzu nötigen neuen Präparationsverfahren für die Objekte werden entwickelt. Ebenso werden neue in-situ Objekthalter entwickelt, die diese Parameter gezielt zu verändern gestatten. Als Ergebnis der Arbeit wird auch gezeigt, dass die Elektronenbeleuchtung einen wichtigen Einfluss auf die gemessenen Potentialverteilungen hat. Sie produziert größere Generationsraten von Elektronen-Loch-Paaren als 1 sun (Standard-Beleuchtung). Tatsächlich werden durch Rekombinationsprozesse an der Oberfläche der Probe die induzierten Potentiale in der Solarzelle verringert. Als Folge wird in der Regel nur das Potenzial des pn-Übergang gemessen. Um eine spürbare Wirkung durch Bestrahlung mit Licht zu erzeugen, muss die TEM-Lamelle dicker gewählt werden, und die Beleuchtung muss wesentlich intensiver sein als unter normalbedingungen. Diese Dissertation realisiert die erste umfassende Studie über die Anwendung von Elektronen-Holographie für die Messung von Potenzialen in Solarzellen unter Anwendung von Biasing und in-situ-Beleuchtung. Die experimentellen Befunde wurden mit umfangreichen Simulationsrechnungen verglichen. Diese zeigen, dass die Vorgänge im wesentlichen qualitativ verstanden sind, auch wenn sie die gemessenen Potentialverteilungen quantitativ oft noch nicht mit der erwünschten Genauigkeit wiedergeben.:1. Introduction 2 Basics of Solar Cells 3 Potential measurement by electron holography 4 Application of electron holography on solar cells 5 Design, construction, characterisation and application of a TEM holder for in-situ biasing and illumination 6 TEM sample preparation for in-situ biasing and illumination 7 Measurement of built-in potential under in-situ illumination and bias of solar cells
3

Characterization of tandem organic solar cells

Timmreck, Ronny 23 October 2015 (has links) (PDF)
The tandem solar cell concept is a promising approach to improve the efficiency of photovoltaic devices. However, characterization of tandem solar cell devices is challenging since correct efficiency determination demands special experimental infrastructure as well as suitable characterization procedures. Even though the appropriate IEC and ASTM measurement standards define all that very precisely, they cannot be applied without special care to organic photovoltaics (OPV) because they were originally developed for inorganic devices. As a consequence, nowadays almost all tandem organic solar cell publications are not using correct characterization procedures, often resulting in questionable efficiency values. The aim of this work is developing a measurement procedure for tandem organic solar cells assuring their correct characterization. Therefore, at first the existing standards and measurement procedures for tandem solar cells are reviewed and challenges when applying these standards to organic solar cells are identified. As main challenges the relatively low fill factors and distinct nonlinearities of organic solar cells are identified. As preliminary experiments, single junction organic solar cells are investigated to analyze the influence of measurement parameters like bias irradiance, bias voltage, and chopper frequency on the external quantum efficiency (EQE) of organic solar cells. This results in parameter sets assuring minimized artifacts for the subsequent EQE determination of the subcells of tandem organic solar cells. The main part of this thesis presents the detailed characterization of a tandem OPV example device. First, EQE is measured and validated by two independent institutes. The EQE results are used to calculate the illumination conditions to reach AM1.5g conditions for both subcells with a multi-source sun simulator. The resulting efficiency value under standard reporting conditions (SRC) is found to be 5% lower than the efficiency measured with a single-source sun simulator. A full spectrometric characterization shows that differing fill factors of the subcells are the reason for this behavior. To overcome the main reason for the complicated measurement procedure of tandem solar cells, the inaccessibility of the individual subcells, three different approaches for the jV-characteristics determination of the subcells are presented. The so-called Bias Voltage Approach is based on EQE-measurements under varying bias voltage and needs no additional electrical contacts. Therefore, it can be applied to existing devices. The Voltage Contact Approach as well as the Current Contact Approach require in changed stack designs. Therefore, they cannot be applied to existing devices but give more accurate results. Finally, a procedure for characterizing tandem organic solar cells is formulated. This procedures aims at giving practical advice how to characterize tandem organic solar cells to achieve results conforming to the measurement standards and being as accurate and reproducible as possible. Hence, this thesis attempts to establish standards for a correct measurement of tandem organic solar cells of which other emerging solar cell technologies can profit as well.
4

Light trapping substrates and electrodes for flexible organic photovoltaics

Park, Yoonseok 28 February 2017 (has links) (PDF)
Organic solar cells are one of the most promising candidates for future solar power generation. They are thin and lightweight with several additional advantages such as scalability, environmental sustainability and low cost for processing and installation. However, the low charge carrier mobility of the absorbing material for organic solar cells requires thin absorber layers, limiting photon harvesting and the overall power conversion efficiency. Several attempts, e.g., periodically patterned structures and scattering layers have been tried to enhance the absorption of thin-film solar cells as light trapping elements. However, much effort is required to introduce light trapping structures to conventional rigid metal oxide electrodes and glass substrate. For instance, almost 13 hours are required to fabricate micro structures of 1 m2 area on glass, in contrast, 1 minute on PET using a same laser set-up and an additional scattering layers are demanded for providing light trapping effects to solar cells. In the last years, flexibility is emerging as the one of the major advantages of organic solar cells. To realize flexibility of solar cells, the classically used glass substrates and ITO electrodes are too brittle. Therefore, polymer materials are promising candidates to replace them as flexible electrodes and substrates. In this thesis, the highly transparent conducting polymer, PEDOT:PSS and PET equipped with an AlOx encapsulation layer are used as electrode and substrate, respectively. Besides the flexibility, additional light trapping elements, e.g. scattering particles, nano- and microstructures can be easily applied to the polymer materials since they have the potential for easier shaping and processing. In this study, we apply different light trapping and in-coupling approaches to organic solar cells. First, PET substrates are structured with a direct laser interference patterning system, which is a powerful and scalable one-step technique for patterning polymers. Almost 80 % of the light is diffracted by these patterned PET substrates and thereby the light path in the absorption layer is increased. Optical display films, commercially developed to be used as back light units of liquid crystal displays are also examined as light trapping substrates and exhibit similar enhancement as patterned PET. Moreover, since PEDOT:PSS is prepared by a solution-based process, TiO2 nanoparticles are added as light scattering elements to the PEDOT:PSS electrodes. Consequently, those electrodes provide a dual function as electrical contact and light trapping element. Finally, 2- or 3-dimensional nanostructures are printed by a nano-imprinting technique onto the surface of PEDOT:PSS with PDMS stamps. By controlling the temperature and the time of PEDOT:PSS during an annealing step, nanostructures are transferred from PDMS masks to PEDOT:PSS. To evaluate the effects of light trapping for all above mentioned approaches, flexible organic solar cells are produced by vacuum evaporation using blends of DCV5T-Me and C60 as absorber layer. The substrates are optically characterized using UV-vis spectrometer and goniometer measurements. The topography of the samples is measured by atomic force microscopy, scanning microscopy and optical microscopy. Bending tests with various radii are performed to test the flexibility of the substrates. In summary, light trapping effects are successfully implemented in the electrodes and substrates for OPVs, giving efficiency improvements of up to 16 %. The light trapping mechanisms in our approaches are extensively discussed in this thesis. / Organische Photovoltaik ist einer der vielversprechendsten Kandidaten für die zukünftige Solarstromgewinnung auf flexiblen Substraten. Um diese Flexibilität zu ermöglichen, sind herkömliche Glassubstrate mit ITO-Elektroden zu spröde. Ein vielversprechender Kandidat, um sowohl flexible Elektroden als auch flexible Substrate herzustellen, sind Polymere, da diese sehr biegsam und leicht zu verarbeiten sind. Deshalb wird in dieser Arbeit das hoch transparente, leitfähige Polymer PEDOT:PSS als Elektrode und PET (mit einer AlOx Verkapselungsschicht) als Substrat untersucht. Aufgrund der guten Prozessierbarkeit der Polymere konnten wir zusätzlich zu den eigentlichen Funktionen des Substrates und der Elektrode noch den Mechanismus des Lichteinfangs hinzufügen. Zusätzlich zu ihrer Flexibilität haben organische Solarzellen noch weitere Vorteile: sie sind dünn, leicht, skalierbar und verursachen vergleichsweise geringe Kosten für Herstellung und Installation. Ein Nachteil organischer Solarzellen ist die vergleichsweise geringe Ladungsträgerbeweglichkeit der Absorbermaterialien, welche oft die Schichtdicke der Absorbermaterialien begrenzt. Dies hat weniger absorbierte Photonen, weniger Stromdichte und somit einen geringeren Wirkungsgrad zur Folge. In den letzten Jahren wurden periodisch strukturierte Substrate und streuende Schichten als Lichteinfangelemente eingesetzt, um den Wirkungsgrad organischer Solarzellen mit dünnen Absorberschichten zu erhöhen. Gestaltungsregeln für solche Lichteinfangelemente sind noch weitestgehend unbekannt. Im Rahmen dieser Arbeit strukturieren wir PET Substrate mit einem direkten Laserinterferenzsystem, welches ein leistungsfähiges, skalierbares Einschrittverfahren zur Polymerstrukturierung ist. Da PEDOT:PSS aus der Lösung prozessiert wird, können wir weiterhin Nanopartikel hinzufügen, die der Elektrode zusätzlich noch lichtstreuende Eigenschaften geben. Außerdem können 2- bzw. 3-dimensionale Nanostrukturen leicht mithilfe einer Stempeltechnik eingeprägt werden. Um die Effekte des Lichteinfangs, welcher durch die oben genannten Methoden erzeugt wird, zu untersuchen, werden flexible organische Solarzellen mittels Vakuumverdampfung prozessiert. DCV5T-Me und C60 bilden dabei die photoaktive Schicht. Somit werden die Licht fangenden Eigenschaften dieser flexiblen Solarzellen ausgenutzt und ausführlich in der Arbeit diskutiert.
5

Spektroskopische Untersuchung neuartiger Fullerenakzeptoren für organische Solarzellen / Spectroscopic Investigation of new Fullerene based Acceptors for Organic Solar Cells

Liedtke, Moritz Nils January 2011 (has links) (PDF)
In dieser Arbeit habe ich mich hauptsächlich mit der optischen Spektroskopie im sichtbaren bis nahinfraroten Bereich an Akzeptoren für organische bulk-heterojunction Polymer-Fulleren Solarzellen beschäftigt. Dabei führte ich sowohl Untersuchungen an reinen Fullerenproben als auch Gemischen dieser mit Polymeren durch. Ergänzend sind Messungen zur Morphologie, den Spinzuständen und der Solarzellenleistung erfolgt. Erreicht werden sollte, die generelle Eignung neuartiger Akzeptoren für organische Solarzellen festzustellen, die photoinduzierten spektroskopischen Signaturen von optisch angeregten Anionen auf Fullerenen verschiedener Größe zu finden und zu interpretieren sowie zum Abschluss die Abläufe der Ladungsträgergeneration in Polymer:Lu3N@C80 Solarzellen nachzuvollziehen und dadurch die Ursache der vergleichsweise geringen Stromdichte in diesen Zellen zu verstehen, die 25 % geringer ist als in P3HT:PC60BM Solarzellen. Die Ergebnisse sind, dass C70-C70 Dimer Fullerene sehr gute Akzeptoren darstellen, die neben einer etwas besseren Absorption als C60 basierte Akzeptoren im Bereich um 500 nm sehr gute Fähigkeiten als Elektronenakzeptoren zeigen. Die Messung an Fullerenen verschiedener Größe, um Anionensignaturen zu finden, hat deutliche Signaturen für C60- bei 1.18 eV und für C70- bei 0.92 eV erbracht. Weniger einfach zu finden und interpretieren sind die Signaturen von C80- und C84-. Aufgrund der geringen Signalstärke sowie spezieller Eigenheiten der zur Verfügung stehenden Fullerene konnte ich nur einen ungefähren Bereich von 0.7~eV bis 0.4~eV für die Anionensignaturen abschätzen. Allerdings zeigt sich für alle Fullerene eine Rotverschiebung der Anionensignaturen hin zu niedrigeren Energien mit steigender Zahl der Kohlenstoffatome pro Fulleren. Die umfangreichste Untersuchung habe ich an dem Molekül Lu3N@C80 in seiner Funktion als Elektronenakzeptor in P3HT:Lu3N@C80 Solarzellen gemacht. Während das Molekül in Kombination mit P3HT eine hohe Leerlaufspannung von 835 mV erzeugt, ergeben diese Zellen geringere Stromdichten. Mein Ziel war es, die Prozesse zu identifizieren und zu verstehen, die dafür verantwortlich zeichnen. Aus der Kombination verschiedener Messmethoden, ergänzt mit generellen Erkenntnissen zu endohedralen Fullerenen aus der Literatur, ließ es zu, einen intramolekularen Elektronentransfer von den Lutetiumatomen innerhalb des C80 auf das Fulleren als Ursache zu identifizieren. Die in dieser Arbeit gewonnenen Daten liefern weitere Indizien, dass die Verwendung von C70 basierten Fullerenen eine gute Option zur Verbesserung des Wirkungsgrads von organischen Solarzellen sein kann, trotz der höheren Herstellungskosten. Die gefundenen Anionensignaturen auf den Fullerenen bieten einen weiteren Ansatz, die Anregungsabläufe in verschiedenen bulk-heterojunctions über spektroskopische Messungen nachzuvollziehen. Abschließend habe ich mit meinen Messungen an Lu3N@C80 einen generell zu beachtenden Effekt aufgezeigt, der bei der zukünftigen Synthese funktionaler Akzeptoren ähnlicher Art berücksichtigt werden sollte, um eine optimale Leistungsfähigkeit solcher Moleküle zu gewährleisten. Während die Projekte über die Dimer Akzeptoren und das Lu3N@C80 Molekül abgeschlossen wurden, sind bei der Untersuchung der Anionen, speziell auf großen Fullerenen, noch Fragen offen, und es wären zusätzliche Nachweise wünschenswert. Dies könnte mit spinsensitiven und zeitaufgelösten Messmethoden, die am Lehrstuhl vorhanden sind, an den hier schon vorgestellten Materialien erreicht werden. Eine weitere Möglichkeit wäre es zu versuchen, PC81$BM zu bekommen und dies zu untersuchen, auch in Gemischen mit noch mehr verschiedenen Polymeren mittels photoinduzierter Absorption. / The main topic of my thesis was the optical spectroscopy of accepters for organic bulk-heterojunction polymer-fullerene solar cells in the visible till near-infrared regime. Pure fullerene samples as well as blends of fullerenes with polymers were studied. Additionally measurements regarding the morphology, spin states and solar cell performance were done. The aims were to determine the ability of new molecules as acceptors for organic solar cells, to find and understand the photoinduced absorption signatures of optical excited anions on fullerene bulks of different sizes and finally to learn about the charge carrier generation process in polymer:Lu3N@C80 blends and thus understand the origin of the comparable low current density in this devices, about 25 % less than for P3HT:PC60BM solar cells. In our publications due to these topics we presented that the novel C70-C70 dimer fullerenes are fine acceptors for polymer:fullerene solar cells, showing a better absorption coefficient around 500 nm than C60 based acceptors and high singlet-exciton quenching rates. Anion signatures for fullerene molecules of different sizes were clearly found for C60- at 1.18 eV and for C70- at 0.92 eV. Less clear are my findings regarding the signatures for C80- and C84-. Due to the low signal-to-noise ratio in these measurements and some unique properties of the available materials I was only able to indicate a range from 0.7 eV down to 0.4 eV for the optically detected anion signatures of these fullerenes. Still all fullerenes showed a red shift to lower energies for the anion signatures getting stronger the more carbon atoms the fullerenes were made of. The most detailed research in this thesis was done about the Lu3N@C80 molecules application as electron acceptor in P3HT:Lu3N@C80 solar cells. The use of this acceptor in combination with P3HT lead to a high open circuit voltage of 835 mV in the devices produced, but also a rather low current density. I tried to understand the processes in the charge carrier generation and extraction process causing this. Using several measurement techniques, combined with general knowledge about comparable endohedral fullerenes from the literature, I was able to identify an internal charge transfer of electrons from the lutetium atoms encaged in the C80 to the fullerene bulk as origin The results presented in this work give further indications for the advantages of using C70 based fullerene acceptors in organic solar cells to raise the total power conversion efficiencies of these devices, despite the higher production costs. The identification of anion signatures of different fullerenes show an additional method to monitor the excitation processes by optical spectroscopy in bulk-heterojunction devices. My research regarding the Lu3N@C80 molecule showed a general effect regarding this class of molecules, that will be important for any further synthesizes or application of such molecules in organic photovoltaics. While the projects regarding the dimer acceptors and the Lu3N@C80 molecule were completed in this work, the analysis of spectroscopic anion signatures left some open questions, especially for large fullerenes. Further investigations using spin sensitive or time resolved techniques, as available in our research group, could be useful to gather more detailed information on this topic. Also trying to get some PC81BM for photoinduced absorption measurements, alone and in blend with several polymers, might be another way to energetically pinpoint the anion signature on C80.
6

Hybride Dünnschicht-Solarzellen aus mesoporösem Titandioxid und konjugierten Polymeren / Hybrid thin solar cells comprising mesoporous titanium dioxide and conjugated polymers

Schattauer, Sylvia January 2010 (has links)
Das Ziel dieser Arbeit ist die Untersuchung der aktiven Komponenten und ihrer Wechselwirkungen in teilorganischen Hybrid-Solarzellen. Diese bestehen aus einer dünnen Titandioxidschicht, kombiniert mit einer dünnen Polymerschicht. Die Effizienz der Hybrid-Solarzellen wird durch die Lichtabsorption im Polymer, die Dissoziation der gebildeten Exzitonen an der aktiven Grenzfläche zwischen TiO2 und Polymer, sowie durch Generation und Extraktion freier Ladungsträger bestimmt. Zur Optimierung der Solarzellen wurden grundlegende physikalische Wechselwirkungen zwischen den verwendeten Materialen sowie der Einfluss verschiedener Herstellungsparameter untersucht. Unter anderem wurden Fragen zum optimalen Materialeinsatz und Präparationsbedingungen beantwortet sowie grundlegende Einflüsse wie Schichtmorphologie und Polymerinfiltration näher betrachtet. Zunächst wurde aus unterschiedlich hergestelltem Titandioxid (Akzeptor-Schicht) eine Auswahl für den Einsatz in Hybrid-Solarzellen getroffen. Kriterium war hierbei die unterschiedliche Morphologie aufgrund der Oberflächenbeschaffenheit, der Film-Struktur, der Kristallinität und die daraus resultierenden Solarzelleneigenschaften. Für die anschließenden Untersuchungen wurden mesoporöse TiO2–Filme aus einer neuen Nanopartikel-Synthese, welche es erlaubt, kristalline Partikel schon während der Synthese herzustellen, als Elektronenakzeptor und konjugierte Polymere auf Poly(p-Phenylen-Vinylen) (PPV)- bzw. Thiophenbasis als Donatormaterial verwendet. Bei der thermischen Behandlung der TiO2-Schichten erfolgt eine temperaturabhängige Änderung der Morphologie, jedoch nicht der Kristallstruktur. Die Auswirkungen auf die Solarzelleneigenschaften wurden dokumentiert und diskutiert. Um die Vorteile der Nanopartikel-Synthese, die Bildung kristalliner TiO2-Partikel bei tiefen Temperaturen, nutzen zu können, wurden erste Versuche zur UV-Vernetzung durchgeführt. Neben der Beschaffenheit der Oxidschicht wurde auch der Einfluss der Polymermorphologie, bedingt durch Lösungsmittelvariation und Tempertemperatur, untersucht. Hierbei konnte gezeigt werden, dass u.a. die Viskosität der Polymerlösung die Infiltration in die TiO2-Schicht und dadurch die Effizienz der Solarzelle beeinflusst. Ein weiterer Ansatz zur Erhöhung der Effizienz ist die Entwicklung neuer lochleitender Polymere, welche möglichst über einen weiten spektralen Bereich Licht absorbieren und an die Bandlücke des TiO2 angepasst sind. Hierzu wurden einige neuartige Konzepte, z.B. die Kombination von Thiophen- und Phenyl-Einheiten näher untersucht. Auch wurde die Sensibilisierung der Titandioxidschicht in Anlehnung an die höheren Effizienzen der Farbstoffzellen in Betracht gezogen. Zusammenfassend konnten im Rahmen dieser Arbeit wichtige Einflussparameter auf die Funktion hybrider Solarzellen identifiziert und z.T. näher diskutiert werden. Für einige limitierende Faktoren wurden Konzepte zur Verbesserung bzw. Vermeidung vorgestellt. / The main objective of this thesis is to study the active components and their interactions in so called organic hybrid solar cells. These consist of a thin inorganic titanium dioxide layer, combined with a polymer layer. In general, the efficiency of these hybrid solar cells is determined by the light absorption in the donor polymer, the dissociation of excitons at the heterojunction between TiO2 and polymer, as well as the generation and extraction of free charge carriers. To optimize the solar cells, the physical interactions between the materials are modified and the influences of various preparation parameters are systematically investigated. Among others, important findings regarding the optimal use of materials and preparation conditions as well as detailed investigations of fundamental factors such as film morphology and polymer infiltration are presented in more detail. First, a variety of titanium dioxide layer were produced, from which a selection for use in hybrid solar cells was made. The obtained films show differences in surface structure, film morphology and crystallinity, depending on the way how the TiO2 layer has been prepared. All these properties of the TiO2 films may strongly affect the performance of the hybrid solar cells, by influencing e.g. the exciton diffusion length, the efficiency of exciton dissociation at the hybrid interface, and the carrier transport properties. Detailed investigations were made for mesoporous TiO2 layer following a new nanoparticle synthesis route, which allows to produce crystalline particles during the synthesis. As donor component, conjugated polymers, either derivatives of cyclohexylamino-poly(p-phenylene vinylene) (PPV) or a thiophene are used. The preparation routine also includes a thermal treatment of the TiO2 layers, revealing a temperature-dependent change in morphology, but not of the crystal structure. The effects on the solar cell properties have been documented and discussed. To take advantage of the nanoparticle synthesis, the formation of crystalline TiO2 particles by UV crosslinking and first solar cell measurements are presented. In addition to the nature of the TiO2 layer, the influence of polymer morphology is investigated. Different morphologies are realized by solvent variation and thermal annealing. It is shown that, among other factors, the viscosity of the polymer solution and the infiltration into the TiO2 layer mainly affects the efficiency of the solar cell. Another approach to increase the efficiency is the development of new hole-conducting polymers that absorb over a wide spectral range and which are adjusted to the energy levels of TiO2. Also new concepts, for example, the combination of thiophene- and phenyl-units into a copolymer are investigated in more detail. In summary, important parameters influencing the properties of hybrid solar cells are identified and discussed in more detail. For some limiting factors concepts to overcome these limitations are presented.
7

Korrelation von Struktur, optischen Eigenschaften und Ladungstransport in einem konjugierten Naphthalindiimid-Bithiophen Copolymer mit herausragender Elektronenmobilität / Correlation of structure, optical properties and charge transport in a conjugated naphtalendiimide-bithiophene copolymer with outstanding electron mobility

Steyrleuthner, Robert January 2014 (has links)
Organische Halbleiter besitzen neue, bemerkenswerte Materialeigenschaften, die sie für die grundlegende Forschung wie auch aktuelle technologische Entwicklung (bsw. org. Leuchtdioden, org. Solarzellen) interessant werden lassen. Aufgrund der starken konformative Freiheit der konjugierten Polymerketten führt die Vielzahl der möglichen Anordnungen und die schwache intermolekulare Wechselwirkung für gewöhnlich zu geringer struktureller Ordnung im Festkörper. Die Morphologie hat gleichzeitig direkten Einfluss auf die elektronische Struktur der organischen Halbleiter, welches sich meistens in einer deutlichen Reduktion der Ladungsträgerbeweglichkeit gegenüber den anorganischen Verwandten zeigt. So stellt die Beweglichkeit der Ladungen im Halbleiter einen der limitierenden Faktoren für die Leistungsfähigkeit bzw. den Wirkungsgrad von funktionellen organischen Bauteilen dar. Im Jahr 2009 wurde ein neues auf Naphthalindiimid und Bithiophen basierendes Dornor/Akzeptor Copolymer vorgestellt [P(NDI2OD‑T2)], welches sich durch seine außergewöhnlich hohe Ladungsträgermobilität auszeichnet. In dieser Arbeit wird die Ladungsträgermobilität in P(NDI2OD‑T2) bestimmt, und der Transport durch eine geringe energetischer Unordnung charakterisiert. Obwohl dieses Material zunächst als amorph beschrieben wurde zeigt eine detaillierte Analyse der optischen Eigenschaften von P(NDI2OD‑T2), dass bereits in Lösung geordnete Vorstufen supramolekularer Strukturen (Aggregate) existieren. Quantenchemische Berechnungen belegen die beobachteten spektralen Änderungen. Mithilfe der NMR-Spektroskopie kann die Bildung der Aggregate unabhängig von optischer Spektroskopie bestätigt werden. Die Analytische Ultrazentrifugation an P(NDI2OD‑T2) Lösungen legt nahe, dass sich die Aggregation innerhalb der einzelnen Ketten unter Reduktion des hydrodynamischen Radius vollzieht. Die Ausbildung supramolekularen Strukturen nimmt auch eine signifikante Rolle bei der Filmbildung ein und verhindert gleichzeitig die Herstellung amorpher P(NDI2OD‑T2) Filme. Durch chemische Modifikation der P(NDI2OD‑T2)-Kette und verschiedener Prozessierungs-Methoden wurde eine Änderung des Kristallinitätsgrades und gleichzeitig der Orientierung der kristallinen Domänen erreicht und mittels Röntgenbeugung quantifiziert. In hochauflösenden Elektronenmikroskopie-Messungen werden die Netzebenen und deren Einbettung in die semikristallinen Strukturen direkt abgebildet. Aus der Kombination der verschiedenen Methoden erschließt sich ein Gesamtbild der Nah- und Fernordnung in P(NDI2OD‑T2). Über die Messung der Elektronenmobilität dieser Schichten wird die Anisotropie des Ladungstransports in den kristallographischen Raumrichtungen von P(NDI2OD‑T2) charakterisiert und die Bedeutung der intramolekularen Wechselwirkung für effizienten Ladungstransport herausgearbeitet. Gleichzeitig wird deutlich, wie die Verwendung von größeren und planaren funktionellen Gruppen zu höheren Ladungsträgermobilitäten führt, welche im Vergleich zu klassischen semikristallinen Polymeren weniger sensitiv auf die strukturelle Unordnung im Film sind. / Organic semiconductors are in the focus of recent research and technological development (eg. for organic light-emitting diodes and solar cells) due to their specific and outstanding material properties. The strong conformational freedom of conjugated polymer chains usually leads to a large number of possible geometric arrangements while weak intermolecular interactions additionally lead to poor structural order in the solid state. At the same time the morphology of those systems has direct influence on the electronic structure of the organic semiconductor which is accompanied by a significant reduction of the charge carrier mobility in contrast to their inorganic counterparts. In that way the transport of charges within the semiconductor represents one of the main limiting factors regarding the performance and efficiency of functional organic devices. In 2009 Facchetti and coworkers presented a novel conjugated donor/acceptor copolymer based on naphthalene diimide and bithiophene [P(NDI2OD‑T2)] which was characterized by an outstanding charge carrier mobility. In this work the mobility of electrons and holes in the bulk of P(NDI2OD‑T2) is determined by single carrier devices and the time-of-flight technique. The results imply a low energetic disorder in these polymer layers. While the material was initially expected to be mainly amorphous, a detailed study of the photophysical properties of P(NDI2OD‑T2) shows that precursors of supramolecular assemblies (aggregates) are already formed in polymer solution. Quantum-chemical calculations support the occurring optical changes. NMR spectroscopy was applied to independently prove the formation of chain aggregates in commonly used organic solvents. The investigation of P(NDI2OD‑T2) solutions by analytical ultracentrifugation implies that aggregation mainly proceeds within single polymer chains by reduction of the hydrodynamic radius. To understand the influence of the chemical structure, pre-aggregation and crystal packing of conventional regioregular P(NDI2OD-T2) on the charge transport, the corresponding regioirregular polymer RI-P(NDI2OD-T2) was synthesized. By combining optical, X-ray, and transmission electron microscopy data, a quantitatively characterization of the aggregation, crystallization, and backbone orientation of all of the polymer films was possible, which was then correlated to the electron mobilities in electron-only diodes. The anisotropy of the charge transport along the different crystallographic directions is demonstrated and how the mobility depends on π-stacking but is insensitive to the degree or coherence of lamellar stacking. The comparison between the regioregular and regioirregular polymers also shows how the use of large planar functional groups leads to improved charge transport, with mobilities that are less affected by chemical and structural disorder with respect to classic semicrystalline polymers such as poly(3-hexylthiophene).
8

Bildung von Hohlräumen in lokalen Rückseitenkontakten bei Passivated Emitter and Rear Solarzellen

Dressler, Katharina 14 October 2016 (has links) (PDF)
In dieser Arbeit wurden zunächst zwei Charakterisierungsmethoden zur zerstörungsfreien Detektion von Voids in lokalen Rückseitenkontakten bei PERC Solarzellen vorgestellt, die akustische Mikroskopie und die Computertomografie. Beide Messmethoden wurden anhand von Proben mit unterschiedlichen Al-Pasten getestet und mit beiden Messmethoden können Voids sehr gut erkannt werden. Zur Vermeidung von Voidbildung konnte der positive Einfluss der Siliziumbeimischung in die Al-Paste bestätigt werden. Desweiteren konnte anhand unterschiedlicher RTP Feuerprofile gezeigt werden, dass durch eine verlangsamte Aufheizphase die Bildung von Voids deutlich reduziert werden kann, während die Abkühlphase nur einen geringen Einfluss auf die Voidbildung zeigt. Mithilfe eigens hergestellter Al-Pasten, mit unterschiedlichen Al-Partikelgrößen, wurde gezeigt, dass Al-Pasten mit einer Mischung aus kleinen und großen Al-Partikeln ebenfalls einen positiven Einfluss auf die Ausbildung von Voids haben können.
9

Light trapping substrates and electrodes for flexible organic photovoltaics

Park, Yoonseok 20 February 2017 (has links)
Organic solar cells are one of the most promising candidates for future solar power generation. They are thin and lightweight with several additional advantages such as scalability, environmental sustainability and low cost for processing and installation. However, the low charge carrier mobility of the absorbing material for organic solar cells requires thin absorber layers, limiting photon harvesting and the overall power conversion efficiency. Several attempts, e.g., periodically patterned structures and scattering layers have been tried to enhance the absorption of thin-film solar cells as light trapping elements. However, much effort is required to introduce light trapping structures to conventional rigid metal oxide electrodes and glass substrate. For instance, almost 13 hours are required to fabricate micro structures of 1 m2 area on glass, in contrast, 1 minute on PET using a same laser set-up and an additional scattering layers are demanded for providing light trapping effects to solar cells. In the last years, flexibility is emerging as the one of the major advantages of organic solar cells. To realize flexibility of solar cells, the classically used glass substrates and ITO electrodes are too brittle. Therefore, polymer materials are promising candidates to replace them as flexible electrodes and substrates. In this thesis, the highly transparent conducting polymer, PEDOT:PSS and PET equipped with an AlOx encapsulation layer are used as electrode and substrate, respectively. Besides the flexibility, additional light trapping elements, e.g. scattering particles, nano- and microstructures can be easily applied to the polymer materials since they have the potential for easier shaping and processing. In this study, we apply different light trapping and in-coupling approaches to organic solar cells. First, PET substrates are structured with a direct laser interference patterning system, which is a powerful and scalable one-step technique for patterning polymers. Almost 80 % of the light is diffracted by these patterned PET substrates and thereby the light path in the absorption layer is increased. Optical display films, commercially developed to be used as back light units of liquid crystal displays are also examined as light trapping substrates and exhibit similar enhancement as patterned PET. Moreover, since PEDOT:PSS is prepared by a solution-based process, TiO2 nanoparticles are added as light scattering elements to the PEDOT:PSS electrodes. Consequently, those electrodes provide a dual function as electrical contact and light trapping element. Finally, 2- or 3-dimensional nanostructures are printed by a nano-imprinting technique onto the surface of PEDOT:PSS with PDMS stamps. By controlling the temperature and the time of PEDOT:PSS during an annealing step, nanostructures are transferred from PDMS masks to PEDOT:PSS. To evaluate the effects of light trapping for all above mentioned approaches, flexible organic solar cells are produced by vacuum evaporation using blends of DCV5T-Me and C60 as absorber layer. The substrates are optically characterized using UV-vis spectrometer and goniometer measurements. The topography of the samples is measured by atomic force microscopy, scanning microscopy and optical microscopy. Bending tests with various radii are performed to test the flexibility of the substrates. In summary, light trapping effects are successfully implemented in the electrodes and substrates for OPVs, giving efficiency improvements of up to 16 %. The light trapping mechanisms in our approaches are extensively discussed in this thesis. / Organische Photovoltaik ist einer der vielversprechendsten Kandidaten für die zukünftige Solarstromgewinnung auf flexiblen Substraten. Um diese Flexibilität zu ermöglichen, sind herkömliche Glassubstrate mit ITO-Elektroden zu spröde. Ein vielversprechender Kandidat, um sowohl flexible Elektroden als auch flexible Substrate herzustellen, sind Polymere, da diese sehr biegsam und leicht zu verarbeiten sind. Deshalb wird in dieser Arbeit das hoch transparente, leitfähige Polymer PEDOT:PSS als Elektrode und PET (mit einer AlOx Verkapselungsschicht) als Substrat untersucht. Aufgrund der guten Prozessierbarkeit der Polymere konnten wir zusätzlich zu den eigentlichen Funktionen des Substrates und der Elektrode noch den Mechanismus des Lichteinfangs hinzufügen. Zusätzlich zu ihrer Flexibilität haben organische Solarzellen noch weitere Vorteile: sie sind dünn, leicht, skalierbar und verursachen vergleichsweise geringe Kosten für Herstellung und Installation. Ein Nachteil organischer Solarzellen ist die vergleichsweise geringe Ladungsträgerbeweglichkeit der Absorbermaterialien, welche oft die Schichtdicke der Absorbermaterialien begrenzt. Dies hat weniger absorbierte Photonen, weniger Stromdichte und somit einen geringeren Wirkungsgrad zur Folge. In den letzten Jahren wurden periodisch strukturierte Substrate und streuende Schichten als Lichteinfangelemente eingesetzt, um den Wirkungsgrad organischer Solarzellen mit dünnen Absorberschichten zu erhöhen. Gestaltungsregeln für solche Lichteinfangelemente sind noch weitestgehend unbekannt. Im Rahmen dieser Arbeit strukturieren wir PET Substrate mit einem direkten Laserinterferenzsystem, welches ein leistungsfähiges, skalierbares Einschrittverfahren zur Polymerstrukturierung ist. Da PEDOT:PSS aus der Lösung prozessiert wird, können wir weiterhin Nanopartikel hinzufügen, die der Elektrode zusätzlich noch lichtstreuende Eigenschaften geben. Außerdem können 2- bzw. 3-dimensionale Nanostrukturen leicht mithilfe einer Stempeltechnik eingeprägt werden. Um die Effekte des Lichteinfangs, welcher durch die oben genannten Methoden erzeugt wird, zu untersuchen, werden flexible organische Solarzellen mittels Vakuumverdampfung prozessiert. DCV5T-Me und C60 bilden dabei die photoaktive Schicht. Somit werden die Licht fangenden Eigenschaften dieser flexiblen Solarzellen ausgenutzt und ausführlich in der Arbeit diskutiert.
10

Transparent Electrodes for Organic Solar Cells / Transparente Elektroden für organische Solarzellen

Selzer, Franz 29 March 2016 (has links) (PDF)
The aim of this work was to investigate silver nanowire as well as carbon nanotube networks as transparent conducting electrodes for small molecule organic solar cells. In the framework of the nanowire investigations, a low-temperature method at less than 80 °C is developed to obtain highly conductive networks directly after the deposition and without post-processing. In detail, specific non-conductive organic materials act as a matrix where the nanowires are embedded in such that a mutual attraction based on capillary forces and hydrophobic interaction is created. This process is mediated by the ethanol contained in the nanowire dispersion and works only for sublayer materials which exhibit hydrophobic and hydrophilic groups at the same time. In contrast to high-temperature processed reference electrodes (210 °C for 90 min) without matrix, a slightly lower sheet resistance of 10.8 Ohm/sq at a transparency of 80.4 % (including substrate) is obtained by using polyvinylpyrrolidone as the sublayer material. In comparison to annealed silver nanowire networks, the novel approach yields a performance enhancement in corresponding organic solar cells which can compete with ITO-based devices. Furthermore, a novel approach for scalable, highly conductive, and transparent silver nanowire top-electrodes for organic optoelectronic devices is introduced. By utilizing a perfluorinated methacrylate as stabilizer, silver nanowires with high aspect ratio can be transferred into inert solvents which do not dissolve most organic compounds making this modified dispersion compatible with small molecule and polymer-based organic optoelectronic devices. The inert silver nanowire dispersion yields highly performing top-electrodes with a sheet resistance of 10.0 Ohm/sq at 80.0 % transparency (including substrate) directly after low-temperature deposition at 30 °C and without further post-processing. In comparison to similarly prepared reference devices comprising a thin-metal film as transparent top-electrode, reasonable power conversion efficiencies are demonstrated by spray-coating this dispersion directly on simple, air-exposed small molecule-based organic solar cells. Moreover, a deeper understanding of the percolation behavior of silver nanowire networks has been achieved. Herein, direct measurements of the basic network parameters, including the wire-to-wire junction resistance and the resistance of a single nanowire of pristine and annealed networks have been carried out for the first time. By putting the values into a simulation routine, a good accordance between measurement and simulation is achieved. Thus, an examination of the electrical limit of the nanowire system used in this work can be realized by extrapolating the junction resistance down to zero. The annealed silver nanowires are fairly close to the limit with a theoretical enhancement range of only 20 % (common absolute sheet resistance of approximately 10 Ohm/sq) such that a significant performance improvement is only expected by an enlargement of the nanowire length or by the implementation of new network geometries. In addition, carbon nanotube networks are investigated as alternative network-type, transparent bottom-electrode for organic small molecule solar cells. For that purpose, cleaning and structuring as well as planarization procedures are developed and optimized which maintain the optoelectronic performance of the carbon nanotube electrodes. Furthermore, a hybrid electrode consisting of silver nanowires covered with carbon nanotubes is fabricated yielding organic solar cells with only 0.47 % power conversion efficiency. In contrast, optimized electrodes comprising only carbon nanotubes show significantly higher efficiency. In comparison to identically prepared ITO devices, comparable or lower power conversion efficiencies of 3.96 % (in p-i-n stack), 4.83 % (in cascade cell) as well as 4.81 % (in p-n-i-p architecture) are demonstrated. For an inverted n-i-p stack design, the highest power conversion efficiency of 5.42 % is achieved.

Page generated in 0.4559 seconds